mmRAG / app.py
kvan1's picture
refactor print
ef24b5d verified
#from google.colab import userdata
import os
import base64
import json
import cv2
import moviepy.editor as mp
import gradio as gr
from pathlib import Path
from llama_index.core import Settings
from llama_index.core import StorageContext
from llama_index.core import SimpleDirectoryReader
from llama_index.core.indices.multi_modal.base import MultiModalVectorStoreIndex
from llama_index.embeddings.mistralai import MistralAIEmbedding
from llama_index.vector_stores.milvus import MilvusVectorStore
# Configure default embedding model
Settings.embed_model = MistralAIEmbedding(
"mistral-embed",
api_key=os.getenv('MISTRAL_API_KEY')
)
# Global variables for session state
index = None
metadata = None
# Functions for video and audio processing
def process_video(video_path, output_folder, output_audio_path):
Path(output_folder).mkdir(parents=True, exist_ok=True)
video_to_images(video_path, output_folder)
video_to_audio(video_path, output_audio_path)
with open(os.path.join(output_folder, "output_text.txt"), "w") as file:
file.write(audio_to_text(output_audio_path))
os.remove(output_audio_path)
# breakpoint()
response = f"Video path: {video_path}\nAudio path: {output_audio_path}\nText: {output_audio_path}"
return response
def video_to_images(video_path, output_folder, frame_interval=30):
cap = cv2.VideoCapture(video_path)
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
cv2.imwrite(f"{output_folder}/frame_{frame_count}.jpg", frame)
frame_count += 1
cap.release()
def audio_to_text(audio_path):
from openai import OpenAI
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
with open(audio_path, "rb") as audio_file:
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
return transcript.text
def video_to_audio(video_path, output_path):
video = mp.VideoFileClip(video_path)
video.audio.write_audiofile(output_path)
def create_index(output_folder):
text_store = MilvusVectorStore(
uri="milvus_local.db",
collection_name="text_collection",
overwrite=True,
dim=1024
)
image_store = MilvusVectorStore(
uri="milvus_local.db",
collection_name="image_collection",
overwrite=True,
dim=512
)
storage_context = StorageContext.from_defaults(
vector_store=text_store,
image_store=image_store
)
documents = SimpleDirectoryReader(output_folder).load_data()
return MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context
)
# Gradio callbacks
def process_video_callback(video_file):
global index, metadata
# breakpoint()
output_folder = "output"
output_audio_path = "output/audio.wav"
video_path = video_file.name
# Process video and create index
metadata = process_video(video_path, output_folder, output_audio_path)
# breakpoint()
index = create_index(output_folder)
return "Video processed successfully!"
def query_video_callback(query):
global index, metadata
if not index:
return "No video index found. Please upload and process a video first."
# Retrieve relevant context from the index
# breakpoint()
retrieval_result = index.as_retriever().retrieve(query)
text_contexts = []
image_documents = []
for node in retrieval_result:
if hasattr(node.node, 'image'):
image_documents.append(node.node)
else:
text_contexts.append(node.node.text)
# Combine text contexts
context_str = "\n".join(text_contexts)
metadata_str = json.dumps(metadata, indent=2)
# Generate response
if image_documents:
response = f"Text Context: {context_str}\nMetadata: {metadata_str}\nImage Documents Found: {len(image_documents)}"
else:
response = "No relevant images found to answer the query."
return response
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Multi-Modal RAG with Gradio")
video_input = gr.File(label="Upload a Video", file_types=[".mp4", ".avi"])
process_button = gr.Button("Process Video")
query_input = gr.Textbox(label="Ask a Question About the Video")
query_button = gr.Button("Submit Query")
output_text = gr.Textbox(label="Response")
process_button.click(process_video_callback, inputs=video_input, outputs=output_text)
query_button.click(query_video_callback, inputs=query_input, outputs=output_text)
demo.launch(debug=True)