import streamlit as st import joblib import pandas as pd model = joblib.load('selector.h5') prices = pd.read_csv("crop_prices.csv") st.title("Crop Selection App") st.header("Input Soil Data:") nitrogen = st.number_input("Nitrogen", min_value=0, max_value=100, value=50) phosphorus = st.number_input("Phosphorus", min_value=0, max_value=100, value=50) potassium = st.number_input("Potassium", min_value=0, max_value=100, value=50) temperature = st.number_input("Temperature", min_value=0.0, max_value=100.0, value=25.0,step=1.,format="%.4f") humidity = st.number_input("Humidity", min_value=0.0, max_value=100.0, value=50.0,step=1.,format="%.4f") ph = st.number_input("pH", min_value=0.0, max_value=14.0, value=7.0,step=1.,format="%.4f") rainfall = st.number_input("Rainfall", min_value=0.0, max_value=1000.0, value=500.0,step=1.,format="%.4f") user_input = [[nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall]] if st.button("Predict"): predicted_crop = model.predict_proba(user_input) crop_probabilities = list(zip(model.classes_, predicted_crop[0])) # Sort crops based on probability estimates sorted_crops = sorted(crop_probabilities, key=lambda x: x[1], reverse=True) # Display the sorted crops st.header("Top 3 Crops to grow:") for i, (crop, probability) in enumerate(sorted_crops[:3]): prob_percent = probability*100 #st.write(f"{i+1}. {crop}: {prob_percent:.2f}%") average_price = prices.loc[prices['CROP'] == crop, 'AVG PRICES'].values[0] st.write(f"{i+1}. {crop}: {prob_percent:.2f}% || Average Price: Rs.{average_price} / Quintal") st.text("Created by Analytical Aces")