Spaces:
Sleeping
Sleeping
import streamlit as st | |
import joblib | |
import pandas as pd | |
model = joblib.load('selector.h5') | |
prices = pd.read_csv("crop_prices.csv") | |
st.title("Crop Selection App") | |
st.header("Input Soil Data:") | |
nitrogen = st.number_input("Nitrogen", min_value=0, max_value=100, value=50) | |
phosphorus = st.number_input("Phosphorus", min_value=0, max_value=100, value=50) | |
potassium = st.number_input("Potassium", min_value=0, max_value=100, value=50) | |
temperature = st.number_input("Temperature", min_value=0.0, max_value=100.0, value=25.0,step=1.,format="%.4f") | |
humidity = st.number_input("Humidity", min_value=0.0, max_value=100.0, value=50.0,step=1.,format="%.4f") | |
ph = st.number_input("pH", min_value=0.0, max_value=14.0, value=7.0,step=1.,format="%.4f") | |
rainfall = st.number_input("Rainfall", min_value=0.0, max_value=1000.0, value=500.0,step=1.,format="%.4f") | |
user_input = [[nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall]] | |
if st.button("Predict"): | |
predicted_crop = model.predict_proba(user_input) | |
crop_probabilities = list(zip(model.classes_, predicted_crop[0])) | |
# Sort crops based on probability estimates | |
sorted_crops = sorted(crop_probabilities, key=lambda x: x[1], reverse=True) | |
# Display the sorted crops | |
st.header("Top 3 Crops to grow:") | |
for i, (crop, probability) in enumerate(sorted_crops[:3]): | |
prob_percent = probability*100 | |
#st.write(f"{i+1}. {crop}: {prob_percent:.2f}%") | |
average_price = prices.loc[prices['CROP'] == crop, 'AVG PRICES'].values[0] | |
st.write(f"{i+1}. {crop}: {prob_percent:.2f}% || Average Price: Rs.{average_price} / Quintal") | |
st.text("Created by Analytical Aces") |