Spaces:
Runtime error
Runtime error
kushal1506
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,59 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import librosa
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torch import Tensor
|
6 |
-
import torch.nn as nn
|
7 |
-
from model import Model
|
8 |
-
|
9 |
-
model_path = 'final_model.pth'
|
10 |
-
def load_data(path):
|
11 |
-
X, fs = librosa.load(path)
|
12 |
-
X_pad = pad(X,64600)
|
13 |
-
x_inp = Tensor(X_pad).unsqueeze(0)
|
14 |
-
return x_inp,fs
|
15 |
-
|
16 |
-
def pad(x, max_len=64600):
|
17 |
-
x_len = x.shape[0]
|
18 |
-
if x_len >= max_len:
|
19 |
-
return x[:max_len]
|
20 |
-
# need to pad
|
21 |
-
num_repeats = int(max_len / x_len)+1
|
22 |
-
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
|
23 |
-
return padded_x
|
24 |
-
|
25 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
26 |
-
model = Model(None, device)
|
27 |
-
nb_params = sum([param.view(-1).size()[0] for param in model.parameters()])
|
28 |
-
model =nn.DataParallel(model).to(device)
|
29 |
-
|
30 |
-
model.load_state_dict(torch.load(model_path, map_location=device))
|
31 |
-
print("Model loaded : {}".format(model_path))
|
32 |
-
|
33 |
-
model.eval()
|
34 |
-
prediction_dict = {0: 'Fake', 1: 'Real'}
|
35 |
-
def Detection(
|
36 |
-
|
37 |
-
x_inp,fs = load_data(
|
38 |
-
print(x_inp.shape)
|
39 |
-
validity_probs = model(x_inp)
|
40 |
-
validity_probs = torch.nn.functional.softmax(validity_probs, dim=1)
|
41 |
-
|
42 |
-
emotion = torch.argmax(validity_probs).item()
|
43 |
-
print(emotion)
|
44 |
-
validity = prediction_dict[emotion]
|
45 |
-
# validity as a dictionary of class probabilities
|
46 |
-
# validity = {prediction_dict[i]: float(validity_probs[0][i]) for i in range(2)}
|
47 |
-
|
48 |
-
return validity
|
49 |
-
|
50 |
-
|
51 |
-
# text_output = gr.Textbox(label="Prediction")
|
52 |
-
text_output = gr.Textbox(label="
|
53 |
-
gr.Interface(
|
54 |
-
fn=Detection,
|
55 |
-
inputs=
|
56 |
-
outputs=text_output,
|
57 |
-
title="Audio Deepfake Detection",
|
58 |
-
description="Audio Deepfake Detection
|
59 |
-
).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
import torch.nn as nn
|
7 |
+
from model import Model
|
8 |
+
|
9 |
+
model_path = 'final_model.pth'
|
10 |
+
def load_data(path):
|
11 |
+
X, fs = librosa.load(path)
|
12 |
+
X_pad = pad(X,64600)
|
13 |
+
x_inp = Tensor(X_pad).unsqueeze(0)
|
14 |
+
return x_inp,fs
|
15 |
+
|
16 |
+
def pad(x, max_len=64600):
|
17 |
+
x_len = x.shape[0]
|
18 |
+
if x_len >= max_len:
|
19 |
+
return x[:max_len]
|
20 |
+
# need to pad
|
21 |
+
num_repeats = int(max_len / x_len)+1
|
22 |
+
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
|
23 |
+
return padded_x
|
24 |
+
|
25 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
26 |
+
model = Model(None, device)
|
27 |
+
nb_params = sum([param.view(-1).size()[0] for param in model.parameters()])
|
28 |
+
model =nn.DataParallel(model).to(device)
|
29 |
+
|
30 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
31 |
+
print("Model loaded : {}".format(model_path))
|
32 |
+
|
33 |
+
model.eval()
|
34 |
+
prediction_dict = {0: 'Fake', 1: 'Real'}
|
35 |
+
def Detection(audio):
|
36 |
+
|
37 |
+
x_inp,fs = load_data(audio)
|
38 |
+
print(x_inp.shape)
|
39 |
+
validity_probs = model(x_inp)
|
40 |
+
validity_probs = torch.nn.functional.softmax(validity_probs, dim=1)
|
41 |
+
|
42 |
+
emotion = torch.argmax(validity_probs).item()
|
43 |
+
print(emotion)
|
44 |
+
validity = prediction_dict[emotion]
|
45 |
+
# validity as a dictionary of class probabilities
|
46 |
+
# validity = {prediction_dict[i]: float(validity_probs[0][i]) for i in range(2)}
|
47 |
+
|
48 |
+
return validity
|
49 |
+
|
50 |
+
audio = gr.Audio(type="filepath", label="Audio")
|
51 |
+
# text_output = gr.Textbox(label="Prediction")
|
52 |
+
text_output = gr.Textbox(label="Real Or Fake")
|
53 |
+
gr.Interface(
|
54 |
+
fn=Detection,
|
55 |
+
inputs=audio,
|
56 |
+
outputs=text_output,
|
57 |
+
title="Audio Deepfake Detection",
|
58 |
+
description="Audio Deepfake Detection.",
|
59 |
+
).launch()
|