import gradio as gr import torch from PIL import Image from torchvision import transforms from transformers import ViTForImageClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ViTForImageClassification.from_pretrained('umutbozdag/plant-identity', num_labels=10, ignore_mismatched_sizes=True) model.load_state_dict(torch.load('model.pth', map_location=device)) model.to(device) model.eval() # Define the prediction function def predict_image(img): transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) img_t = transform(img).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(img_t).logits _, predicted = torch.max(outputs, 1) class_names = ["Aloe Vera", "Areca Palm", "Boston Fern", "Chinese evergreen", "Dracaena", "Money Tree", "Peace lily", "Rubber Plant", "Snake Plant", "ZZ Plant"] return class_names[predicted.item()] # Create a Gradio interface interface = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="text") interface.launch(share = True)