from diffusers import DiffusionPipeline from diffusers import AutoPipelineForText2Image from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline import torch def load_huggingface_model(model_name, model_type): if model_name == "SD-turbo": pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16") pipe = pipe.to("cuda") elif model_name == "SDXL-turbo": pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16") pipe = pipe.to("cuda") elif model_name == "Stable-cascade": prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16) decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16) pipe = [prior, decoder] else: raise NotImplementedError # if model_name == "SD-turbo": # pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo") # elif model_name == "SDXL-turbo": # pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") # else: # raise NotImplementedError # pipe = pipe.to("cpu") return pipe if __name__ == "__main__": for name in ["SD-turbo", "SDXL-turbo"]: #"SD-turbo", "SDXL-turbo" pipe = load_huggingface_model(name, "text2image") # for name in ["IF-I-XL-v1.0"]: # pipe = load_huggingface_model(name, 'text2image') # pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)