import replicate from PIL import Image import requests import io import os import base64 Replicate_MODEl_NAME_MAP = { "SDXL": "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "SD-v3.0": "stability-ai/stable-diffusion-3", "SD-v2.1": "stability-ai/stable-diffusion:ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e4", "SD-v1.5": "stability-ai/stable-diffusion:b3d14e1cd1f9470bbb0bb68cac48e5f483e5be309551992cc33dc30654a82bb7", "SDXL-Lightning": "bytedance/sdxl-lightning-4step:5f24084160c9089501c1b3545d9be3c27883ae2239b6f412990e82d4a6210f8f", "Kandinsky-v2.0": "ai-forever/kandinsky-2:3c6374e7a9a17e01afe306a5218cc67de55b19ea536466d6ea2602cfecea40a9", "Kandinsky-v2.2": "ai-forever/kandinsky-2.2:ad9d7879fbffa2874e1d909d1d37d9bc682889cc65b31f7bb00d2362619f194a", "Proteus-v0.2": "lucataco/proteus-v0.2:06775cd262843edbde5abab958abdbb65a0a6b58ca301c9fd78fa55c775fc019", "Playground-v2.0": "playgroundai/playground-v2-1024px-aesthetic:42fe626e41cc811eaf02c94b892774839268ce1994ea778eba97103fe1ef51b8", "Playground-v2.5": "playgroundai/playground-v2.5-1024px-aesthetic:a45f82a1382bed5c7aeb861dac7c7d191b0fdf74d8d57c4a0e6ed7d4d0bf7d24", "Dreamshaper-xl-turbo": "lucataco/dreamshaper-xl-turbo:0a1710e0187b01a255302738ca0158ff02a22f4638679533e111082f9dd1b615", "SDXL-Deepcache": "lucataco/sdxl-deepcache:eaf678fb34006669e9a3c6dd5971e2279bf20ee0adeced464d7b6d95de16dc93", "Openjourney-v4": "prompthero/openjourney:ad59ca21177f9e217b9075e7300cf6e14f7e5b4505b87b9689dbd866e9768969", "LCM": "fofr/latent-consistency-model:683d19dc312f7a9f0428b04429a9ccefd28dbf7785fef083ad5cf991b65f406f", "Realvisxl-v3.0": "fofr/realvisxl-v3:33279060bbbb8858700eb2146350a98d96ef334fcf817f37eb05915e1534aa1c", "Realvisxl-v2.0": "lucataco/realvisxl-v2.0:7d6a2f9c4754477b12c14ed2a58f89bb85128edcdd581d24ce58b6926029de08", "Pixart-Sigma": "cjwbw/pixart-sigma:5a54352c99d9fef467986bc8f3a20205e8712cbd3df1cbae4975d6254c902de1", "SSD-1b": "lucataco/ssd-1b:b19e3639452c59ce8295b82aba70a231404cb062f2eb580ea894b31e8ce5bbb6", "Open-Dalle-v1.1": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "Deepfloyd-IF": "andreasjansson/deepfloyd-if:fb84d659df149f4515c351e394d22222a94144aa1403870c36025c8b28846c8d", } class ReplicateModel(): def __init__(self, model_name, model_type): self.model_name = model_name self.model_type = model_type # os.environ['FAL_KEY'] = os.environ['FalAPI'] def __call__(self, *args, **kwargs): # def decode_data_url(data_url): # # Find the start of the Base64 encoded data # base64_start = data_url.find(",") + 1 # if base64_start == 0: # raise ValueError("Invalid data URL provided") # # Extract the Base64 encoded data # base64_string = data_url[base64_start:] # # Decode the Base64 string # decoded_bytes = base64.b64decode(base64_string) # return decoded_bytes if self.model_type == "text2image": assert "prompt" in kwargs, "prompt is required for text2image model" output = replicate.run( f"{Replicate_MODEl_NAME_MAP[self.model_name]}", input={ "width": 512, "height": 512, "prompt": kwargs["prompt"] }, ) if 'Openjourney' in self.model_name: for item in output: result_url = item break elif isinstance(output, list): result_url = output[0] else: result_url = output print(result_url) response = requests.get(result_url) result = Image.open(io.BytesIO(response.content)) # fal_client.submit( # f"fal-ai/{FAL_MODEl_NAME_MAP[self.model_name]}", # arguments={ # "prompt": kwargs["prompt"] # }, # ) # for event in handler.iter_events(with_logs=True): # if isinstance(event, fal_client.InProgress): # print('Request in progress') # print(event.logs) # result = handler.get() # print(result) # result_url = result['images'][0]['url'] # if self.model_name in ["SDXLTurbo", "LCM(v1.5/XL)"]: # result_url = io.BytesIO(decode_data_url(result_url)) # result = Image.open(result_url) # else: # response = requests.get(result_url) # result = Image.open(io.BytesIO(response.content)) return result # elif self.model_type == "image2image": # raise NotImplementedError("image2image model is not implemented yet") # # assert "image" in kwargs or "image_url" in kwargs, "image or image_url is required for image2image model" # # if "image" in kwargs: # # image_url = None # # pass # # handler = fal_client.submit( # # f"fal-ai/{self.model_name}", # # arguments={ # # "image_url": image_url # # }, # # ) # # # # for event in handler.iter_events(): # # if isinstance(event, fal_client.InProgress): # # print('Request in progress') # # print(event.logs) # # # # result = handler.get() # # return result # elif self.model_type == "text2video": # assert "prompt" in kwargs, "prompt is required for text2video model" # if self.model_name == 'AnimateDiff': # fal_model_name = 'fast-animatediff/text-to-video' # elif self.model_name == 'AnimateDiffTurbo': # fal_model_name = 'fast-animatediff/turbo/text-to-video' # else: # raise NotImplementedError(f"text2video model of {self.model_name} in fal is not implemented yet") # handler = fal_client.submit( # f"fal-ai/{fal_model_name}", # arguments={ # "prompt": kwargs["prompt"] # }, # ) # for event in handler.iter_events(with_logs=True): # if isinstance(event, fal_client.InProgress): # print('Request in progress') # print(event.logs) # result = handler.get() # print("result video: ====") # print(result) # result_url = result['video']['url'] # return result_url else: raise ValueError("model_type must be text2image or image2image") def load_replicate_model(model_name, model_type): return ReplicateModel(model_name, model_type) if __name__ == "__main__": import replicate import time input = { "seed": 1, "width": 512, "height": 512, "grid_size": 1, "prompt": "anime astronaut riding a horse on mars" } for name, address in Replicate_MODEl_NAME_MAP.items(): print('*'*50) print(name) t1 = time.time() output = replicate.run( address, input=input ) # for item in output: # print(item) print(output) t2 = time.time() print(t2-t1) print('*'*50)