File size: 7,796 Bytes
b177a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import replicate
from PIL import Image
import requests
import io
import os
import base64

Replicate_MODEl_NAME_MAP = {
    "SDXL": "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
    "SD-v3.0": "stability-ai/stable-diffusion-3",
    "SD-v2.1": "stability-ai/stable-diffusion:ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e4",
    "SD-v1.5": "stability-ai/stable-diffusion:b3d14e1cd1f9470bbb0bb68cac48e5f483e5be309551992cc33dc30654a82bb7",
    "SDXL-Lightning": "bytedance/sdxl-lightning-4step:5f24084160c9089501c1b3545d9be3c27883ae2239b6f412990e82d4a6210f8f",
    "Kandinsky-v2.0": "ai-forever/kandinsky-2:3c6374e7a9a17e01afe306a5218cc67de55b19ea536466d6ea2602cfecea40a9",
    "Kandinsky-v2.2": "ai-forever/kandinsky-2.2:ad9d7879fbffa2874e1d909d1d37d9bc682889cc65b31f7bb00d2362619f194a",
    "Proteus-v0.2": "lucataco/proteus-v0.2:06775cd262843edbde5abab958abdbb65a0a6b58ca301c9fd78fa55c775fc019",
    "Playground-v2.0": "playgroundai/playground-v2-1024px-aesthetic:42fe626e41cc811eaf02c94b892774839268ce1994ea778eba97103fe1ef51b8",
    "Playground-v2.5": "playgroundai/playground-v2.5-1024px-aesthetic:a45f82a1382bed5c7aeb861dac7c7d191b0fdf74d8d57c4a0e6ed7d4d0bf7d24",
    "Dreamshaper-xl-turbo": "lucataco/dreamshaper-xl-turbo:0a1710e0187b01a255302738ca0158ff02a22f4638679533e111082f9dd1b615",
    "SDXL-Deepcache": "lucataco/sdxl-deepcache:eaf678fb34006669e9a3c6dd5971e2279bf20ee0adeced464d7b6d95de16dc93",
    "Openjourney-v4": "prompthero/openjourney:ad59ca21177f9e217b9075e7300cf6e14f7e5b4505b87b9689dbd866e9768969",
    "LCM": "fofr/latent-consistency-model:683d19dc312f7a9f0428b04429a9ccefd28dbf7785fef083ad5cf991b65f406f",
    "Realvisxl-v3.0": "fofr/realvisxl-v3:33279060bbbb8858700eb2146350a98d96ef334fcf817f37eb05915e1534aa1c", 
    
    "Realvisxl-v2.0": "lucataco/realvisxl-v2.0:7d6a2f9c4754477b12c14ed2a58f89bb85128edcdd581d24ce58b6926029de08",
    "Pixart-Sigma": "cjwbw/pixart-sigma:5a54352c99d9fef467986bc8f3a20205e8712cbd3df1cbae4975d6254c902de1",
    "SSD-1b": "lucataco/ssd-1b:b19e3639452c59ce8295b82aba70a231404cb062f2eb580ea894b31e8ce5bbb6",
    "Open-Dalle-v1.1": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144",
    "Deepfloyd-IF": "andreasjansson/deepfloyd-if:fb84d659df149f4515c351e394d22222a94144aa1403870c36025c8b28846c8d",
    }

class ReplicateModel():
    def __init__(self, model_name, model_type):
        self.model_name = model_name
        self.model_type = model_type
        # os.environ['FAL_KEY'] = os.environ['FalAPI']
    
    def __call__(self, *args, **kwargs):
        # def decode_data_url(data_url):
        #     # Find the start of the Base64 encoded data
        #     base64_start = data_url.find(",") + 1
        #     if base64_start == 0:
        #         raise ValueError("Invalid data URL provided")

        #     # Extract the Base64 encoded data
        #     base64_string = data_url[base64_start:]

        #     # Decode the Base64 string
        #     decoded_bytes = base64.b64decode(base64_string)

        #     return decoded_bytes

        if self.model_type == "text2image":
            assert "prompt" in kwargs, "prompt is required for text2image model"
            output  = replicate.run(
                                    f"{Replicate_MODEl_NAME_MAP[self.model_name]}",
                                    input={
                                            "width": 512,
                                            "height": 512,
                                            "prompt": kwargs["prompt"]
                                        },
                                )
            if 'Openjourney' in self.model_name:
                for item in output:
                    result_url = item
                    break
            elif isinstance(output, list):
                result_url = output[0]
            else:
                result_url = output
            print(result_url)
            response = requests.get(result_url)
            result = Image.open(io.BytesIO(response.content))
            # fal_client.submit(
            #     f"fal-ai/{FAL_MODEl_NAME_MAP[self.model_name]}",
            #     arguments={
            #         "prompt": kwargs["prompt"]
            #     },
            # )
            # for event in handler.iter_events(with_logs=True):
            #     if isinstance(event, fal_client.InProgress):
            #         print('Request in progress')
            #         print(event.logs)
            # result = handler.get()
            # print(result)
            # result_url = result['images'][0]['url']
            # if self.model_name in ["SDXLTurbo", "LCM(v1.5/XL)"]:
            #     result_url = io.BytesIO(decode_data_url(result_url))
            #     result = Image.open(result_url)
            # else:
            #     response = requests.get(result_url)
            #     result = Image.open(io.BytesIO(response.content))
            return result
        # elif self.model_type == "image2image":
        #     raise NotImplementedError("image2image model is not implemented yet")
        #     # assert "image" in kwargs or "image_url" in kwargs, "image or image_url is required for image2image model"
        #     # if "image" in kwargs:
        #     #     image_url = None
        #     #     pass
        #     # handler = fal_client.submit(
        #     #     f"fal-ai/{self.model_name}",
        #     #     arguments={
        #     #         "image_url": image_url
        #     #     },
        #     # )
        #     #
        #     # for event in handler.iter_events():
        #     #     if isinstance(event, fal_client.InProgress):
        #     #         print('Request in progress')
        #     #         print(event.logs)
        #     #
        #     # result = handler.get()
        #     # return result
        # elif self.model_type == "text2video":
        #     assert "prompt" in kwargs, "prompt is required for text2video model"
        #     if self.model_name == 'AnimateDiff':
        #         fal_model_name = 'fast-animatediff/text-to-video'
        #     elif self.model_name == 'AnimateDiffTurbo':
        #         fal_model_name = 'fast-animatediff/turbo/text-to-video'
        #     else:
        #         raise NotImplementedError(f"text2video model of {self.model_name} in fal is not implemented yet")
        #     handler = fal_client.submit(
        #         f"fal-ai/{fal_model_name}",
        #         arguments={
        #             "prompt": kwargs["prompt"]
        #         },
        #     )

        #     for event in handler.iter_events(with_logs=True):
        #         if isinstance(event, fal_client.InProgress):
        #             print('Request in progress')
        #             print(event.logs)

        #     result = handler.get()
        #     print("result video: ====")
        #     print(result)
        #     result_url = result['video']['url']
        #     return result_url
        else:
            raise ValueError("model_type must be text2image or image2image")

def load_replicate_model(model_name, model_type):
    return ReplicateModel(model_name, model_type)


if __name__ == "__main__":
    import replicate
    import time
    input = {
        "seed": 1,
        "width": 512,
        "height": 512,
        "grid_size": 1,
        "prompt": "anime astronaut riding a horse on mars"
    }


    for name, address in Replicate_MODEl_NAME_MAP.items():
        print('*'*50)
        print(name)

        t1 = time.time()
        output = replicate.run(
            address,
            input=input
        )
        # for item in output:
        #     print(item)
        print(output)


        t2 = time.time()
        print(t2-t1)
        print('*'*50)