import sys import struct import json import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer import sentencepiece.sentencepiece_model_pb2 as model # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] fname_out = sys.argv[1] + "/ggml-model.bin" with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( dir_model, low_cpu_mem_usage=True, trust_remote_code=True ) # print (model) # print(tokenizer.encode('I believe the meaning of life is')) list_vars = model.state_dict() for name in list_vars.keys(): print(name, list_vars[name].shape, list_vars[name].dtype) fout = open(fname_out, "wb") print(hparams) fout.write(struct.pack("i", 0x67676D6C)) # magic: ggml in hex fout.write(struct.pack("i", hparams["d_model"])) fout.write(struct.pack("i", hparams["max_seq_len"])) fout.write(struct.pack("i", hparams["n_heads"])) fout.write(struct.pack("i", hparams["n_layers"])) fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"])) fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0)) fout.write(struct.pack("i", ftype)) vocab_size = hparams["vocab_size"] encoder = tokenizer.vocab # Add added_tokens (special tokens) to the encoder encoder.update(tokenizer.get_added_vocab()) byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} counter = 0 # sort by value for key in sorted(encoder, key=encoder.get): # workaround for key error when c not found text="" for c in key: if c not in byte_decoder: text += c else: text += chr(byte_decoder[c] ) text = bytearray( text, encoding="utf-8" ) fout.write(struct.pack("i", len(text))) fout.write(text) counter += 1 # Repeat last token until vocab_size while counter < vocab_size: fout.write(struct.pack("i", len(text))) fout.write(text) counter += 1 # assert counter == config.vocab_size for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable: " + name + " with shape: ", data.shape) n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 if ftype != 0: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # header str = name.encode("utf-8") fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str) # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")