Spaces:
Build error
Build error
File size: 14,143 Bytes
f8c5b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
#ifndef LLAMA_V2_H
#define LLAMA_V2_H
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_V2_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_V2_BUILD
# define LLAMA_V2_API __declspec(dllexport)
# else
# define LLAMA_V2_API __declspec(dllimport)
# endif
# else
# define LLAMA_V2_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_V2_API
#endif
#define LLAMA_V2_FILE_VERSION 3
#define LLAMA_V2_FILE_MAGIC 'ggjt'
#define LLAMA_V2_FILE_MAGIC_UNVERSIONED 'ggml'
#define LLAMA_V2_SESSION_MAGIC 'ggsn'
#define LLAMA_V2_SESSION_VERSION 1
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_v2_context;
typedef int llama_v2_token;
typedef struct llama_v2_token_data {
llama_v2_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_v2_token_data;
typedef struct llama_v2_token_data_array {
llama_v2_token_data * data;
size_t size;
bool sorted;
} llama_v2_token_data_array;
typedef void (*llama_v2_progress_callback)(float progress, void *ctx);
struct llama_v2_context_params {
int n_ctx; // text context
int n_gpu_layers; // number of layers to store in VRAM
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_v2_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable
llama_v2_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
};
// model file types
enum llama_v2_ftype {
LLAMA_V2_FTYPE_ALL_F32 = 0,
LLAMA_V2_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
LLAMA_V2_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
};
LLAMA_V2_API struct llama_v2_context_params llama_v2_context_default_params();
LLAMA_V2_API bool llama_v2_mmap_supported();
LLAMA_V2_API bool llama_v2_mlock_supported();
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_V2_API struct llama_v2_context * llama_v2_init_from_file(
const char * path_model,
struct llama_v2_context_params params);
// Frees all allocated memory
LLAMA_V2_API void llama_v2_free(struct llama_v2_context * ctx);
// TODO: not great API - very likely to change
// Returns 0 on success
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
LLAMA_V2_API int llama_v2_model_quantize(
const char * fname_inp,
const char * fname_out,
enum llama_v2_ftype ftype,
int nthread);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_V2_API int llama_v2_apply_lora_from_file(
struct llama_v2_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_V2_API int llama_v2_get_kv_cache_token_count(const struct llama_v2_context * ctx);
// Sets the current rng seed.
LLAMA_V2_API void llama_v2_set_rng_seed(struct llama_v2_context * ctx, int seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_V2_API size_t llama_v2_get_state_size(const struct llama_v2_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_V2_API size_t llama_v2_copy_state_data(struct llama_v2_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_V2_API size_t llama_v2_set_state_data(struct llama_v2_context * ctx, const uint8_t * src);
// Save/load session file
LLAMA_V2_API bool llama_v2_load_session_file(struct llama_v2_context * ctx, const char * path_session, llama_v2_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_V2_API bool llama_v2_save_session_file(struct llama_v2_context * ctx, const char * path_session, const llama_v2_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_V2_API int llama_v2_eval(
struct llama_v2_context * ctx,
const llama_v2_token * tokens,
int n_tokens,
int n_past,
int n_threads);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_V2_API int llama_v2_tokenize(
struct llama_v2_context * ctx,
const char * text,
llama_v2_token * tokens,
int n_max_tokens,
bool add_bos);
std::vector<llama_v2_token> legacy_llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos);
LLAMA_V2_API int llama_v2_n_vocab(const struct llama_v2_context * ctx);
LLAMA_V2_API int llama_v2_n_ctx (const struct llama_v2_context * ctx);
LLAMA_V2_API int llama_v2_n_embd (const struct llama_v2_context * ctx);
// Token logits obtained from the last call to llama_v2_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_V2_API float * llama_v2_get_logits(struct llama_v2_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_V2_API float * llama_v2_get_embeddings(struct llama_v2_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_V2_API const char * llama_v2_token_to_str(const struct llama_v2_context * ctx, llama_v2_token token);
// Special tokens
LLAMA_V2_API llama_v2_token llama_v2_token_bos();
LLAMA_V2_API llama_v2_token llama_v2_token_eos();
LLAMA_V2_API llama_v2_token llama_v2_token_nl();
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_V2_API void llama_v2_sample_repetition_penalty(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_V2_API void llama_v2_sample_frequency_and_presence_penalties(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_V2_API void llama_v2_sample_softmax(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_V2_API void llama_v2_sample_top_k(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_V2_API void llama_v2_sample_top_p(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_V2_API void llama_v2_sample_tail_free(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_V2_API void llama_v2_sample_typical(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep);
LLAMA_V2_API void llama_v2_sample_temperature(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float temp);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_v2_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_V2_API llama_v2_token llama_v2_sample_token_mirostat(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_v2_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_V2_API llama_v2_token llama_v2_sample_token_mirostat_v2(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_V2_API llama_v2_token llama_v2_sample_token_greedy(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_V2_API llama_v2_token llama_v2_sample_token(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates);
// Performance information
LLAMA_V2_API void llama_v2_print_timings(struct llama_v2_context * ctx);
LLAMA_V2_API void llama_v2_reset_timings(struct llama_v2_context * ctx);
// Print system information
LLAMA_V2_API const char * llama_v2_print_system_info(void);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_V2_API_INTERNAL
#include <vector>
#include <string>
struct ggml_v2_tensor;
std::vector<std::pair<std::string, struct ggml_v2_tensor *>>& llama_v2_internal_get_tensor_map(struct llama_v2_context * ctx);
#endif
#endif // LLAMA_V2_H
|