Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,37 @@
|
|
1 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
2 |
-
import requests
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
7 |
|
8 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
9 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
+
from transformers import VisionEncoderDecoderModel , ViTFeatureExtractor , PreTrainedTokenizerFast
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
model = VisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")
|
6 |
+
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch32-224-in21k")
|
7 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained("distilgpt2")
|
8 |
|
|
|
|
|
9 |
|
10 |
+
def caption_images(image):
|
11 |
+
pixel_values = vit_feature_extractor(images=image,return_tensors="pt").pixel_values
|
12 |
+
encoder_outputs = model.generate(pixel_values.to('cpu'),num_beams=5)
|
13 |
+
generated_sentence = tokenizer.batch_decode(encoder_outputs,skip_special_tokens=True)
|
14 |
|
15 |
+
return (generated_sentence[0].strip())
|
16 |
+
|
17 |
+
|
18 |
+
inputs = [
|
19 |
+
gr.components.Image(type='pil',label='Original Image')
|
20 |
+
]
|
21 |
+
|
22 |
+
outputs = [
|
23 |
+
gr.components.Textbox(label='Caption')
|
24 |
+
]
|
25 |
+
|
26 |
+
title = "Simple Image captioning Application"
|
27 |
+
description = "Upload an image to see the caption generated"
|
28 |
+
example =['/content/messi.jpg']
|
29 |
+
|
30 |
+
gr.Interface(
|
31 |
+
caption_images,
|
32 |
+
inputs,
|
33 |
+
outputs,
|
34 |
+
title=title,
|
35 |
+
description = description,
|
36 |
+
examples = example,
|
37 |
+
).launch(debug=True)
|