Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install necessary libraries (if not installed)
|
2 |
+
# !pip install gradio transformers soundfile torch
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import soundfile as sf
|
7 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
|
8 |
+
|
9 |
+
# Load the pre-trained model, vocoder, and processor
|
10 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("krishna195/speecht5_krishna_finatuned")
|
11 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
12 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
13 |
+
|
14 |
+
# Speaker embeddings for speech generation (replace this with actual embeddings if needed)
|
15 |
+
speaker_embeddings = torch.randn(1, 512) # Example speaker embedding size (dummy embeddings)
|
16 |
+
|
17 |
+
# Function to generate speech from input text
|
18 |
+
def text_to_speech(input_text):
|
19 |
+
# Process the input text
|
20 |
+
inputs = processor(text=input_text, return_tensors="pt")
|
21 |
+
|
22 |
+
# Generate speech using the model and vocoder
|
23 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
24 |
+
|
25 |
+
# Save the audio to a file (temporary storage)
|
26 |
+
output_file = "generated_speech.wav"
|
27 |
+
sf.write(output_file, speech.numpy(), 16000)
|
28 |
+
|
29 |
+
# Return the path to the audio file for Gradio to play it
|
30 |
+
return output_file
|
31 |
+
|
32 |
+
# Create Gradio UI
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=text_to_speech,
|
35 |
+
inputs="text",
|
36 |
+
outputs="audio",
|
37 |
+
title="Text to Speech Generator",
|
38 |
+
description="Enter the text you want to convert to speech, and the model will generate the corresponding speech.",
|
39 |
+
examples=[
|
40 |
+
["Hello, how are you doing today?"],
|
41 |
+
["The CUDA programming model allows parallel computing on GPUs."],
|
42 |
+
["TensorFlow and PyTorch are popular machine learning frameworks."]
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the Gradio interface
|
47 |
+
iface.launch()
|