# from transformers import pipeline # import gradio as gr # chatbot = pipeline("text-generation", model="unsloth/DeepSeek-R1-GGUF", trust_remote_code=True) # def chat_with_bot(user_input): # # Generate a response from the chatbot model # response = chatbot(user_input) # return response[0]['generated_text'] # interface = gr.Interface( # fn=chat_with_bot, # Function to call for processing the input # inputs=gr.Textbox(label="Enter your message"), # User input (text) # outputs=gr.Textbox(label="Chatbot Response", lines=10), # Model output (text) # title="Chat with DeepSeek", # Optional: Add a title to your interface # description="Chat with an AI model powered by DeepSeek!" # Optional: Add a description # ) # interface.launch() from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Load the model and tokenizer from Hugging Face model_name = "unsloth/Llama-3.2-3B-Instruct" # Replace with your model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Function to generate text def generate_text(input_text, max_length=100, temperature=0.7, top_p=0.9): # Tokenize the input text inputs = tokenizer(input_text, return_tensors="pt") # Generate text using the model outputs = model.generate( inputs["input_ids"], max_length=max_length, temperature=temperature, top_p=top_p, num_return_sequences=1, no_repeat_ngram_size=2, ) # Decode the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Gradio Interface def gradio_interface(input_text, max_length, temperature, top_p): generated_text = generate_text(input_text, max_length, temperature, top_p) return generated_text # Create the Gradio app app = gr.Interface( fn=gradio_interface, # Function to call inputs=[ gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Input Prompt"), gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (Nucleus Sampling)"), ], outputs=gr.Textbox(lines=10, label="Generated Text"), title="Text Generation with Hugging Face Transformers", description="Generate text using a Hugging Face model.", ) # Launch the app app.launch()