Spaces:
Sleeping
Sleeping
Commit
·
408537b
1
Parent(s):
7963821
Add Chinese titles to graphs
Browse files- .gitattributes +1 -0
- mingliu.ttf +3 -0
- page_likert.py +13 -7
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.ttf filter=lfs diff=lfs merge=lfs -text
|
mingliu.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00b16e0dc854c9d045aecc71aab9b0f76b07cad58cccb3e092ef3ef1da2dc997
|
3 |
+
size 6272080
|
page_likert.py
CHANGED
@@ -3,10 +3,14 @@ import pandas as pd
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
from datasets import load_dataset
|
|
|
6 |
|
7 |
@st.cache_data
|
8 |
def show():
|
9 |
|
|
|
|
|
|
|
10 |
# Get Data
|
11 |
dataset = load_dataset("krishaamer/taiwanese-college-students", data_files={'train': 'clean.csv'})
|
12 |
|
@@ -143,11 +147,11 @@ def show():
|
|
143 |
# Loop through each category in likert_fields to create visualizations
|
144 |
for category, fields in likert_fields.items():
|
145 |
st.subheader(f'Distribution of Responses for {translation_mapping[category]}')
|
146 |
-
|
147 |
# Calculate the number of rows needed for this category
|
148 |
num_fields = len(fields)
|
149 |
-
num_rows = -(-num_fields // 2) #
|
150 |
-
|
151 |
# Create subplots with 2 columns for this category
|
152 |
fig, axs = plt.subplots(num_rows, 2, figsize=(15, 5 * num_rows))
|
153 |
axs = axs.flatten() # Flatten the array of subplots
|
@@ -156,9 +160,12 @@ def show():
|
|
156 |
for i, field in enumerate(fields):
|
157 |
# Create the bar plot
|
158 |
sns.countplot(x=f"{field} ({field_translation_mapping[category][i]})", data=df_translated, ax=axs[i])
|
159 |
-
|
160 |
# Add title and labels
|
161 |
-
|
|
|
|
|
|
|
162 |
axs[i].set_xlabel('Likert Scale')
|
163 |
axs[i].set_ylabel('Frequency')
|
164 |
|
@@ -167,5 +174,4 @@ def show():
|
|
167 |
fig.delaxes(axs[i])
|
168 |
|
169 |
# Show the plot in Streamlit
|
170 |
-
st.pyplot(fig)
|
171 |
-
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
from datasets import load_dataset
|
6 |
+
from matplotlib.font_manager import FontProperties
|
7 |
|
8 |
@st.cache_data
|
9 |
def show():
|
10 |
|
11 |
+
# Chinese font
|
12 |
+
chinese_font = FontProperties(fname='mingliu.ttf')
|
13 |
+
|
14 |
# Get Data
|
15 |
dataset = load_dataset("krishaamer/taiwanese-college-students", data_files={'train': 'clean.csv'})
|
16 |
|
|
|
147 |
# Loop through each category in likert_fields to create visualizations
|
148 |
for category, fields in likert_fields.items():
|
149 |
st.subheader(f'Distribution of Responses for {translation_mapping[category]}')
|
150 |
+
|
151 |
# Calculate the number of rows needed for this category
|
152 |
num_fields = len(fields)
|
153 |
+
num_rows = -(-num_fields // 2) # Equivalent to ceil(num_fields / 2)
|
154 |
+
|
155 |
# Create subplots with 2 columns for this category
|
156 |
fig, axs = plt.subplots(num_rows, 2, figsize=(15, 5 * num_rows))
|
157 |
axs = axs.flatten() # Flatten the array of subplots
|
|
|
160 |
for i, field in enumerate(fields):
|
161 |
# Create the bar plot
|
162 |
sns.countplot(x=f"{field} ({field_translation_mapping[category][i]})", data=df_translated, ax=axs[i])
|
163 |
+
|
164 |
# Add title and labels
|
165 |
+
title_chinese = field
|
166 |
+
title_english = field_translation_mapping[category][i]
|
167 |
+
axs[i].set_title(f"{title_chinese}\n{title_english}", fontproperties=chinese_font) # Add both versions to the title
|
168 |
+
|
169 |
axs[i].set_xlabel('Likert Scale')
|
170 |
axs[i].set_ylabel('Frequency')
|
171 |
|
|
|
174 |
fig.delaxes(axs[i])
|
175 |
|
176 |
# Show the plot in Streamlit
|
177 |
+
st.pyplot(fig)
|
|