Spaces:
Sleeping
Sleeping
Commit
·
24b6da8
1
Parent(s):
434cd9c
Stub for more charts
Browse files- fields/boolean_fields.py +4 -0
- page_investing.py +4 -1
- page_shopping.py +46 -3
fields/boolean_fields.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
boolean_fields = [
|
2 |
+
'你/妳有沒有抵制過某公司?',
|
3 |
+
'你/妳覺得目前有任何投資嗎?'
|
4 |
+
]
|
page_investing.py
CHANGED
@@ -3,12 +3,15 @@ import pandas as pd
|
|
3 |
from matplotlib.font_manager import FontProperties
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
|
|
6 |
|
7 |
@st.cache_data
|
8 |
def show(df):
|
9 |
# Load the Chinese font
|
10 |
-
chinese_font = FontProperties(fname='
|
11 |
st.title("Investing")
|
|
|
|
|
12 |
show_investment_count(df, font_prop=chinese_font)
|
13 |
|
14 |
|
|
|
3 |
from matplotlib.font_manager import FontProperties
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
+
from fields.likert_fields import likert_fields
|
7 |
|
8 |
@st.cache_data
|
9 |
def show(df):
|
10 |
# Load the Chinese font
|
11 |
+
chinese_font = FontProperties(fname='notosans.ttf', size=12)
|
12 |
st.title("Investing")
|
13 |
+
st.markdown(
|
14 |
+
f"<h2 style='text-align: center;'>Investing Experience (Overall)</h2>", unsafe_allow_html=True)
|
15 |
show_investment_count(df, font_prop=chinese_font)
|
16 |
|
17 |
|
page_shopping.py
CHANGED
@@ -4,15 +4,18 @@ import matplotlib.pyplot as plt
|
|
4 |
import seaborn as sns
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
|
|
|
|
7 |
|
8 |
-
|
9 |
def show(df):
|
10 |
# Load the Chinese font
|
11 |
-
chinese_font = FontProperties(fname='
|
12 |
st.title("Shopping")
|
13 |
st.markdown(
|
14 |
-
f"<h2 style='text-align: center;'>Boycott Count</h2>", unsafe_allow_html=True)
|
15 |
show_boycott_count(df, font_prop=chinese_font)
|
|
|
16 |
|
17 |
def show_boycott_count(df, font_prop):
|
18 |
# Count the number of people who have invested and who have not
|
@@ -35,4 +38,44 @@ def show_boycott_count(df, font_prop):
|
|
35 |
plt.text(index, value, str(value), ha='center', va='bottom', fontproperties=font_prop)
|
36 |
|
37 |
# Display the chart in Streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
st.pyplot(plt)
|
|
|
4 |
import seaborn as sns
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
+
from fields.likert_flat_fields import likert_flat_fields
|
8 |
+
#from fields.boolean_fields import boolean_fields
|
9 |
|
10 |
+
#@st.cache_data
|
11 |
def show(df):
|
12 |
# Load the Chinese font
|
13 |
+
chinese_font = FontProperties(fname='notosans.ttf', size=12)
|
14 |
st.title("Shopping")
|
15 |
st.markdown(
|
16 |
+
f"<h2 style='text-align: center;'>Boycott Count (Overall)</h2>", unsafe_allow_html=True)
|
17 |
show_boycott_count(df, font_prop=chinese_font)
|
18 |
+
#generate_correlation_chart(df, chinese_font)
|
19 |
|
20 |
def show_boycott_count(df, font_prop):
|
21 |
# Count the number of people who have invested and who have not
|
|
|
38 |
plt.text(index, value, str(value), ha='center', va='bottom', fontproperties=font_prop)
|
39 |
|
40 |
# Display the chart in Streamlit
|
41 |
+
st.pyplot(plt)
|
42 |
+
|
43 |
+
|
44 |
+
def generate_correlation_chart(df, chinese_font):
|
45 |
+
|
46 |
+
boolean_fields = [
|
47 |
+
'你/妳覺得目前有任何投資嗎?'
|
48 |
+
]
|
49 |
+
|
50 |
+
# Encode boolean fields
|
51 |
+
for field in boolean_fields:
|
52 |
+
df[field + '_encoded'] = df[field].map({'有': 1, '沒有': 0})
|
53 |
+
|
54 |
+
# Combine all fields for correlation
|
55 |
+
all_fields = likert_flat_fields + [f"{field}_encoded" for field in boolean_fields]
|
56 |
+
|
57 |
+
# Calculate the correlation matrix
|
58 |
+
correlation_data = df[all_fields].corr()
|
59 |
+
|
60 |
+
# Define a threshold for strong correlations
|
61 |
+
threshold = 0.5
|
62 |
+
|
63 |
+
# Find all fields that have at least one strong correlation
|
64 |
+
strong_fields = correlation_data.columns[np.abs(correlation_data).max() > threshold]
|
65 |
+
|
66 |
+
# Filter the correlation matrix to only include these fields
|
67 |
+
filtered_correlation_data = correlation_data.loc[strong_fields, strong_fields]
|
68 |
+
|
69 |
+
# Plot the correlation matrix
|
70 |
+
plt.figure(figsize=(10, 8))
|
71 |
+
ax = sns.heatmap(filtered_correlation_data, annot=True, fmt=".2f", cmap="coolwarm")
|
72 |
+
|
73 |
+
# Set the labels with the Chinese font
|
74 |
+
ax.set_xticklabels(ax.get_xticklabels(), fontproperties=chinese_font, rotation=45, ha='right')
|
75 |
+
ax.set_yticklabels(ax.get_yticklabels(), fontproperties=chinese_font, rotation=0)
|
76 |
+
|
77 |
+
# Set the title with the Chinese font
|
78 |
+
plt.title("強相關分析", fontproperties=chinese_font)
|
79 |
+
|
80 |
+
# Show the plot in Streamlit
|
81 |
st.pyplot(plt)
|