Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
5 |
+
|
6 |
+
logging.basicConfig(
|
7 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
8 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
9 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
10 |
+
)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logger.setLevel(logging.DEBUG)
|
13 |
+
|
14 |
+
|
15 |
+
LARGE_MODEL_BY_LANGUAGE = {
|
16 |
+
"Korean": {"model_id": "kresnik/wav2vec2-large-xlsr-korean", "has_lm": True},
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
|
21 |
+
|
22 |
+
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
|
23 |
+
LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
|
24 |
+
CACHED_MODELS_BY_ID = {}
|
25 |
+
|
26 |
+
|
27 |
+
def run(input_file, language, decoding_type, history, model_size="300M"):
|
28 |
+
|
29 |
+
logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")
|
30 |
+
|
31 |
+
history = history or []
|
32 |
+
|
33 |
+
if model_size == "300M":
|
34 |
+
model = LARGE_MODEL_BY_LANGUAGE.get(language, None)
|
35 |
+
else:
|
36 |
+
model = XLARGE_MODEL_BY_LANGUAGE.get(language, None)
|
37 |
+
|
38 |
+
if model is None:
|
39 |
+
history.append({
|
40 |
+
"error_message": f"Model size {model_size} not found for {language} language :("
|
41 |
+
})
|
42 |
+
elif decoding_type == "LM" and not model["has_lm"]:
|
43 |
+
history.append({
|
44 |
+
"error_message": f"LM not available for {language} language :("
|
45 |
+
})
|
46 |
+
else:
|
47 |
+
|
48 |
+
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
49 |
+
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
|
50 |
+
if model_instance is None:
|
51 |
+
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
52 |
+
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
53 |
+
|
54 |
+
if decoding_type == "LM":
|
55 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
56 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
57 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
58 |
+
else:
|
59 |
+
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
60 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
61 |
+
feature_extractor=processor.feature_extractor, decoder=None)
|
62 |
+
|
63 |
+
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
|
64 |
+
|
65 |
+
logger.info(f"Transcription for {input_file}: {transcription}")
|
66 |
+
|
67 |
+
history.append({
|
68 |
+
"model_id": model["model_id"],
|
69 |
+
"language": language,
|
70 |
+
"model_size": model_size,
|
71 |
+
"decoding_type": decoding_type,
|
72 |
+
"transcription": transcription,
|
73 |
+
"error_message": None
|
74 |
+
})
|
75 |
+
|
76 |
+
html_output = "<div class='result'>"
|
77 |
+
for item in history:
|
78 |
+
if item["error_message"] is not None:
|
79 |
+
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
|
80 |
+
else:
|
81 |
+
url_suffix = " + LM" if item["decoding_type"] == "LM" else ""
|
82 |
+
html_output += "<div class='result_item result_item_success'>"
|
83 |
+
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
|
84 |
+
html_output += f'{item["transcription"]}<br/>'
|
85 |
+
html_output += "</div>"
|
86 |
+
html_output += "</div>"
|
87 |
+
|
88 |
+
return html_output, history
|
89 |
+
|
90 |
+
|
91 |
+
gr.Interface(
|
92 |
+
run,
|
93 |
+
inputs=[
|
94 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."),
|
95 |
+
gr.inputs.Radio(label="Language", choices=LANGUAGES),
|
96 |
+
gr.inputs.Radio(label="Decoding type", choices=["greedy"]),
|
97 |
+
# gr.inputs.Radio(label="Model size", choices=["300M", "1B"]),
|
98 |
+
"state"
|
99 |
+
],
|
100 |
+
outputs=[
|
101 |
+
gr.outputs.HTML(label="Outputs"),
|
102 |
+
"state"
|
103 |
+
],
|
104 |
+
title="Automatic Speech Recognition",
|
105 |
+
description="",
|
106 |
+
css="""
|
107 |
+
.result {display:flex;flex-direction:column}
|
108 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
109 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
110 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
111 |
+
""",
|
112 |
+
allow_screenshot=False,
|
113 |
+
allow_flagging="never",
|
114 |
+
theme="grass"
|
115 |
+
).launch(enable_queue=True)
|
116 |
+
|