Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -38,10 +38,10 @@ def transcribe(inputs, prompt):
|
|
38 |
if inputs is None:
|
39 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
40 |
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
41 |
-
if prompt
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
def _return_yt_html_embed(yt_url):
|
47 |
video_id = yt_url.split("?v=")[-1]
|
@@ -83,10 +83,10 @@ def yt_transcribe(yt_url, prompt, max_filesize=75.0):
|
|
83 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
84 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
85 |
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
86 |
-
if prompt
|
87 |
-
|
88 |
-
|
89 |
-
return html_embed_str, text
|
90 |
|
91 |
|
92 |
demo = gr.Blocks()
|
|
|
38 |
if inputs is None:
|
39 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
40 |
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
41 |
+
prompt = "。" if not prompt else prompt
|
42 |
+
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
|
43 |
+
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs=generate_kwargs)["text"]
|
44 |
+
return result['text'][1 + len(prompt) + 1:]
|
45 |
|
46 |
def _return_yt_html_embed(yt_url):
|
47 |
video_id = yt_url.split("?v=")[-1]
|
|
|
83 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
84 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
85 |
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
86 |
+
prompt = "。" if not prompt else prompt
|
87 |
+
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
|
88 |
+
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs=generate_kwargs)["text"]
|
89 |
+
return html_embed_str, result['text'][1 + len(prompt) + 1:]
|
90 |
|
91 |
|
92 |
demo = gr.Blocks()
|