import torch from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM from optimum.bettertransformer import BetterTransformer def load_model( base, finetuned, mode_cpu, mode_mps, mode_full_gpu, mode_8bit, mode_4bit, force_download_ckpt, local_files_only ): tokenizer = AutoTokenizer.from_pretrained( base, trust_remote_code=True, local_files_only=local_files_only ) tokenizer.padding_side = "left" model = AutoModelForCausalLM.from_pretrained( base, load_in_8bit=mode_8bit, load_in_4bit=mode_4bit, torch_dtype=torch.bfloat16, trust_remote_code=True, local_files_only=local_files_only ) if finetuned is not None and \ finetuned != "" and \ finetuned != "N/A": model = PeftModel.from_pretrained( model, finetuned, # force_download=force_download_ckpt, trust_remote_code=True ) model = model.merge_and_unload() # model = BetterTransformer.transform(model) model.to('cuda') return model, tokenizer