konerusudhir commited on
Commit
7526a8e
·
1 Parent(s): bcbe7d2

Updated model reconstruction code

Browse files
Files changed (1) hide show
  1. app.py +7 -14
app.py CHANGED
@@ -68,25 +68,17 @@ def create_classification_model():
68
  # print(inputs)
69
 
70
  vision_model.trainable=False
71
- # vision_model.trainable = True
72
- # # Fine-tune from this layer onwards
73
- # fine_tune_at = 100
74
-
75
- # # Freeze all the layers before the `fine_tune_at` layer
76
- # for layer in base_model.layers[:fine_tune_at]:
77
- # layer.trainable = False
78
  base_model_output = vision_model(rescaled_input)
79
 
80
  current_layer = base_model_output.pooler_output
81
- hidden_layers_nodes = [64]
82
  for node_count in hidden_layers_nodes:
83
  hidden_layer = tf.keras.layers.Dense(node_count, activation='relu')
84
  dropout_layer = tf.keras.layers.Dropout(.2, input_shape=(2,))
85
- # hidden_layer.trainable = False
86
  current_layer = hidden_layer(dropout_layer(current_layer))
87
 
88
- prediction_layer = tf.keras.layers.Dense(9, activation='softmax')
89
- # prediction_layer.trainable = False
90
  outputs = prediction_layer(current_layer)
91
  model = tf.keras.Model(inputs, outputs)
92
 
@@ -94,10 +86,11 @@ def create_classification_model():
94
  model.compile(
95
  # Used leagcy optimizer due to tf 2.11 release issues with MACOS
96
  # optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),
97
- optimizer=tf.keras.optimizers.legacy.Adam(learning_rate=base_learning_rate),
 
98
  loss=tf.keras.losses.SparseCategoricalCrossentropy(),
99
- metrics=['accuracy'],
100
- steps_per_execution=steps_per_execution
101
  )
102
 
103
  return model
 
68
  # print(inputs)
69
 
70
  vision_model.trainable=False
 
 
 
 
 
 
 
71
  base_model_output = vision_model(rescaled_input)
72
 
73
  current_layer = base_model_output.pooler_output
74
+ hidden_layers_nodes = [1024]
75
  for node_count in hidden_layers_nodes:
76
  hidden_layer = tf.keras.layers.Dense(node_count, activation='relu')
77
  dropout_layer = tf.keras.layers.Dropout(.2, input_shape=(2,))
 
78
  current_layer = hidden_layer(dropout_layer(current_layer))
79
 
80
+ prediction_layer = tf.keras.layers.Dense(
81
+ classes_count, activation='softmax')
82
  outputs = prediction_layer(current_layer)
83
  model = tf.keras.Model(inputs, outputs)
84
 
 
86
  model.compile(
87
  # Used leagcy optimizer due to tf 2.11 release issues with MACOS
88
  # optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),
89
+ optimizer=tf.keras.optimizers.legacy.Adam(
90
+ learning_rate=base_learning_rate),
91
  loss=tf.keras.losses.SparseCategoricalCrossentropy(),
92
+ metrics=['accuracy']
93
+ # steps_per_execution=steps_per_execution
94
  )
95
 
96
  return model