Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Write a Simple gradio app to take image as input run a model on it and Returnt the Probability (0 to 1) as a confidence bar
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from huggingface_hub import from_pretrained_keras
|
8 |
+
|
9 |
+
REPO_ID = "ai-or-not/ai-or-not-model"
|
10 |
+
|
11 |
+
model = from_pretrained_keras(REPO_ID)
|
12 |
+
|
13 |
+
|
14 |
+
# Define the function
|
15 |
+
def classify_image(array):
|
16 |
+
# image is numpy array
|
17 |
+
array = array / 255.0
|
18 |
+
image = tf.image.resize_with_pad(array, 224, 224)
|
19 |
+
image = np.expand_dims(image, axis=0)
|
20 |
+
print(image.shape)
|
21 |
+
prediction = model(image)
|
22 |
+
# there are 3 class probabilities in the model 0: "REAL", 1: "GAN", 2: "DIFFUSION"
|
23 |
+
real = prediction[0][0]
|
24 |
+
ai = 1 - real
|
25 |
+
|
26 |
+
return {"REAL": real, "AI": ai}
|
27 |
+
|
28 |
+
|
29 |
+
demo = gr.Interface(fn=classify_image, inputs="image", outputs="label", examples="examples")
|
30 |
+
demo.launch(
|
31 |
+
debug=True,
|
32 |
+
)
|