Spaces:
Running
Running
# Write a Simple gradio app to take image as input run a model on it and Returnt the Probability (0 to 1) as a confidence bar | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
from huggingface_hub import from_pretrained_keras | |
REPO_ID = "konerusudhir/ai-or-not-model" | |
model = from_pretrained_keras(REPO_ID) | |
# Define the function | |
def classify_image(array): | |
# image is numpy array | |
array = array / 255.0 | |
image = tf.image.resize_with_pad(array, 224, 224) | |
image = np.expand_dims(image, axis=0) | |
print(image.shape) | |
prediction = model(image) | |
# there are 3 class probabilities in the model 0: "REAL", 1: "GAN", 2: "DIFFUSION" | |
real = prediction[0][0] | |
ai = 1 - real | |
return {"REAL": real, "AI": ai} | |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="label", examples="examples") | |
demo.launch( | |
debug=True, | |
) | |