import gradio as gr import torch from torchvision.models import resnet50, ResNet50_Weights from PIL import Image import tempfile from gtts import gTTS import whisper from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # ----- 画像認識用モデル (ResNet-50) ----- weights = ResNet50_Weights.IMAGENET1K_V2 img_model = resnet50(weights=weights) img_model.eval() img_transform = weights.transforms() imagenet_classes = weights.meta["categories"] def image_classify(img: Image.Image): img_tensor = img_transform(img).unsqueeze(0) with torch.no_grad(): outputs = img_model(img_tensor) probabilities = torch.nn.functional.softmax(outputs[0], dim=0) top5_prob, top5_catid = torch.topk(probabilities, 5) result = {imagenet_classes[top5_catid[i]]: float(top5_prob[i]) for i in range(5)} return result model_name = "cyberagent/open-calm-1b" model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True ) text_gen_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=128, temperature=0.7, top_p=0.9, pad_token_id=tokenizer.eos_token_id, ) # ----- 言語モデル (LM) ----- def generate_text(prompt): # promptに基づき続きのテキストを生成 result = text_gen_pipeline(prompt, do_sample=True, num_return_sequences=1) generated_text = result[0]["generated_text"] # prompt部分を含めた全文が返るので、prompt部分はそのままでOK return generated_text # ----- 音声合成 (TTS) ----- def text_to_speech(text, lang="ja"): tts = gTTS(text=text, lang=lang) with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as fp: tts.save(fp.name) return fp.name # ----- 音声認識 (ASR) ----- whisper_model = whisper.load_model("small") def speech_to_text(audio_file): result = whisper_model.transcribe(audio_file) return result["text"] # ----- Gradio UI ----- def run(): with gr.Blocks() as demo: gr.Markdown("# 画像認識・言語モデル・音声合成・音声認識") with gr.Tabs(): with gr.TabItem("画像認識"): gr.Markdown("### 画像認識 (ResNet-50)") gr.Interface( fn=image_classify, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=5), description="画像をアップロードして分類します。(ImageNet)", ) with gr.TabItem("言語モデル"): gr.Markdown("### 言語モデル") lm_output = gr.Textbox(label="生成結果") user_input = gr.Textbox(label="入力テキスト") send_btn = gr.Button("送信") send_btn.click(generate_text, inputs=user_input, outputs=lm_output) with gr.TabItem("音声合成"): gr.Markdown("### 音声合成 (gTTS)") tts_input = gr.Textbox(label="音声にしたいテキスト") tts_output = gr.Audio(label="合成音声") tts_button = gr.Button("合成") tts_button.click(text_to_speech, inputs=tts_input, outputs=tts_output) with gr.TabItem("音声認識"): gr.Markdown("### 音声認識 (Whisper)") gr.Interface( fn=speech_to_text, inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), outputs="text", description="マイクから録音して文字起こし", ) demo.launch() if __name__ == "__main__": run()