GranaMeasure / model.py
kkuczkowska's picture
Upload folder using huggingface_hub
8948e19 verified
import itertools
import warnings
from io import BytesIO
from copy import deepcopy
from pathlib import Path
from typing import List, Tuple, Dict, Optional, Any, Union
from dataclasses import dataclass, field
from PIL import Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import ndimage
from skimage import measure
import torchvision.transforms.functional as tvf
from ultralytics import YOLO
import torch
import cv2
import gradio
import sys, os
sys.path.append(os.path.abspath('angle_calculation'))
# from classic import measure_object
from sampling import get_crop_batch
from angle_model import PatchedPredictor, StripsModelLumenWidth
from period_calculation.period_measurer import PeriodMeasurer
# from grana_detection.mmwrapper import MMDetector # mmdet installation in docker is problematic for now
@dataclass
class Granum:
id: Optional[int] = None
image: Any = None
mask: Any = None
scaler: Any = None
nm_per_px: float = float('nan')
detection_confidence: float = float('nan')
img_oriented: Optional[np.ndarray] = None # oriented fragment of the image
mask_oriented: Optional[np.ndarray] = None # oriented fragment of the mask
measurements: dict = field(default_factory=dict) # dict with grana measurements
class ScalerPadder:
"""resize and pad image to specific range.
minimal_pad: obligatory padding, e.g. required for detector
"""
def __init__(self, target_size=1024, target_short_edge_min=640, minimal_pad=16, pad_to_multiply=32):
self.minimal_pad = minimal_pad
self.target_size = target_size - 2*self.minimal_pad # detection pad is necessary padding size
self.target_short_edge_min = target_short_edge_min - 2*self.minimal_pad
self.max_size_nm = 6000 # training images covers ~3100 nm
self.min_size_nm = 2400 # training images covers ~3100 nm
self.pad_to_multiply = pad_to_multiply
def transform(self, image: Image.Image, px_per_nm: float=1.298) -> Image.Image:
self.original_size = image.size
self.original_px_per_nm = px_per_nm
w, h = self.original_size
longest_size = max(h, w)
img_size_nm = longest_size / px_per_nm
if img_size_nm > self.max_size_nm:
error_message = f'too large image, image size: {img_size_nm:0.1f}nm, max allowed: {self.max_size_nm}nm'
# raise ValueError(error_message)
# warnings.warn(warning_message)
gradio.Warning(error_message)
# add_text(image, warning_message, location=(0.1, 0.1), color='blue', size=int(40*longest_size/self.target_size))
self.resize_factor = self.target_size / (max(self.min_size_nm, img_size_nm) * px_per_nm)
self.px_per_nm_transformed = px_per_nm * self.resize_factor
resized_image = resize_with_cv2(image, (int(h*self.resize_factor), int(w*self.resize_factor)))
if w >= h:
pad_w = self.target_size-resized_image.size[0]
pad_h = max(0, self.target_short_edge_min-resized_image.size[1])
else:
pad_w = max(0, self.target_short_edge_min-resized_image.size[0])
pad_h = self.target_size-resized_image.size[1]
# apply minimal padding
pad_w += 2*self.minimal_pad
pad_h += 2*self.minimal_pad
# round to multiplication
pad_w += (self.pad_to_multiply - resized_image.size[0]%self.pad_to_multiply)%self.pad_to_multiply
pad_h += (self.pad_to_multiply - resized_image.size[1]%self.pad_to_multiply)%self.pad_to_multiply
self.pad_right = pad_w // 2
self.pad_left = pad_w - self.pad_right
self.pad_up = pad_h // 2
self.pad_bottom = pad_h - self.pad_up
padded_image = tvf.pad(resized_image, [self.pad_left,self.pad_up, self.pad_right, self.pad_bottom], padding_mode='reflect') # fill 114 as in YOLO
return padded_image
@property
def unpad_slice(self) -> Tuple[slice]:
return slice(self.pad_up,-self.pad_bottom if self.pad_bottom>0 else None), slice(self.pad_left,-self.pad_right if self.pad_right>0 else None)
def inverse_transform(self, image: Union[np.ndarray, Image.Image], output_size: Optional[Tuple[int]]=None, output_nm_per_px: Optional[float]=None, return_pil: bool=True) -> Image.Image:
if isinstance(image, Image.Image):
image = np.array(image)
# h, w = image.shape[:2]
# unpadded_image = image[self.pad_up:h-self.pad_bottom,self.pad_left:w-self.pad_right]
unapdded_image = image[self.unpad_slice]
if output_size is not None and output_nm_per_px is not None:
raise ValueError("one of output_size or output_nm_per_px must not be None")
elif output_nm_per_px is not None:
resize_factor = self.original_nm_per_px/output_nm_per_px
output_size = (int(self.original_size[0]*resize_factor), int(self.original_size[1]*resize_factor))
elif output_size is None:
output_size = self.original_size
resized_image = resize_with_cv2(unapdded_image, (output_size[1],output_size[0]), return_pil=return_pil) #Image.fromarray(unpadded_image).resize(self.original_size)
return resized_image
def close_contour(contour):
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack((contour, contour[0]))
return contour
def binary_mask_to_polygon(binary_mask, tol=0.01):
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
contours = measure.find_contours(padded_binary_mask, 0.5)
# assert len(contours) == 1 #raise error if there are more than 1 contour
contour = contours[0]
contour -= 1 # correct for padding
contour = close_contour(contour)
polygon = measure.approximate_polygon(contour, tol)
polygon = np.flip(polygon, axis=1)
# after padding and subtracting 1 we may get -0.5 points in our polygon. Replace it with 0
polygon = np.where(polygon>=0, polygon, 0)
# segmentation = polygon.ravel().tolist()
return polygon
def measure_shape(binary_mask):
contour = binary_mask_to_polygon(binary_mask)
perimeter = np.sum(np.linalg.norm(contour[:-1] - contour[1:], axis=1))
area = np.sum(binary_mask)
return perimeter, area
def calculate_gsi(perimeter, height, area):
a = 0.5*(perimeter - 2*height)
return 1 - area/(a*height)
def object_slice(mask):
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
row_min, row_max = np.where(rows)[0][[0, -1]]
col_min, col_max = np.where(cols)[0][[0, -1]]
# Create a slice object for the bounding box
bounding_box_slice = (slice(row_min, row_max + 1), slice(col_min, col_max + 1))
return bounding_box_slice
def figure_to_pil(fig):
buf = BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
# Load the image from the buffer as a PIL Image
image = deepcopy(Image.open(buf))
# Close the buffer
buf.close()
return image
def resize_to(image: Image.Image, s: int=4032, return_factor: bool =False) -> Image.Image:
w, h = image.size
longest_size = max(h, w)
resize_factor = longest_size / s
resized_image = image.resize((int(w/resize_factor), int(h/resize_factor)))
if return_factor:
return resized_image, resize_factor
return resized_image
def resize_with_cv2(image, shape, return_pil=True):
"""resize using cv2 with cv2.INTER_LINEAR - consistent with YOLO"""
h, w = shape
if isinstance(image, Image.Image):
image = np.array(image)
resized = cv2.resize(image, (w, h), interpolation=cv2.INTER_LINEAR)
if return_pil:
return Image.fromarray(resized)
else:
return resized
def select_unique_mask(mask):
"""if mask consists of multiple parts, select the largest"""
if not np.any(mask): # if mask is empty, return without change
return mask
blobs = ndimage.label(mask)[0]
blob_labels, blob_sizes = np.unique(blobs, return_counts=True)
best_blob_label = blob_labels[1:][np.argmax(blob_sizes[1:])]
return blobs == best_blob_label
def sliced_mean(x, slice_size):
cs_y = np.cumsum(x, axis=0)
cs_y = np.concatenate((np.zeros((1, cs_y.shape[1]), dtype=cs_y.dtype), cs_y), axis=0)
slices_y = (cs_y[slice_size:] - cs_y[:-slice_size])/slice_size
cs_xy = np.cumsum(slices_y, axis=1)
cs_xy = np.concatenate((np.zeros((cs_xy.shape[0], 1), dtype=cs_xy.dtype), cs_xy), axis=1)
slices_xy = (cs_xy[:,slice_size:] - cs_xy[:,:-slice_size])/slice_size
return slices_xy
def sliced_var(x, slice_size):
x = x.astype('float64')
return sliced_mean(x**2, slice_size) - sliced_mean(x, slice_size)**2
def calculate_distance_map(mask):
padded = np.pad(mask, pad_width=1, mode='constant', constant_values=False)
distance_map_padded = ndimage.distance_transform_edt(padded)
return distance_map_padded[1:-1,1:-1]
def select_samples(granum_image, granum_mask, crop_size=96, n_samples=64, granum_fraction_min=0.75, variance_p=0.):
granum_occupancy = sliced_mean(granum_mask, crop_size)
possible_indices = np.stack(np.where(granum_occupancy >= granum_fraction_min), axis=1)
if variance_p == 0:
p = np.ones(len(possible_indices))
else:
variance_map = sliced_var(granum_image, crop_size)
p = variance_map[possible_indices[:,0], possible_indices[:,1]]**variance_p
p /= np.sum(p)
chosen_indices = np.random.choice(
np.arange(len(possible_indices)),
min(len(possible_indices), n_samples),
replace=False,
p = p
)
crops = []
for crop_idx, idx in enumerate(chosen_indices):
crops.append(
granum_image[
possible_indices[idx,0]:possible_indices[idx,0]+crop_size,
possible_indices[idx,1]:possible_indices[idx,1]+crop_size
]
)
return np.array(crops)
def calculate_height(mask_oriented): #HACK
span = mask_oriented.shape[0] - np.argmax(mask_oriented[::-1], axis=0) - np.argmax(mask_oriented, axis=0)
return np.quantile(span, 0.8)
def calculate_diameter(mask_oriented):
"""returns mean diameter"""
# calculate 0.25 and 0.75 lines
vertical_mask = np.any(mask_oriented, axis=1)
upper_granum_bound = np.argmax(vertical_mask)
lower_granum_bound = mask_oriented.shape[0] - np.argmax(vertical_mask[::-1])
upper = round(0.75*upper_granum_bound + 0.25*lower_granum_bound)
lower = max(upper+1, round(0.25*upper_granum_bound + 0.75*lower_granum_bound))
valid_rows_slice = slice(upper, lower)
# calculate diameters
span = mask_oriented.shape[1] - np.argmax(mask_oriented[valid_rows_slice,::-1], axis=1) - np.argmax(mask_oriented[valid_rows_slice], axis=1)
return np.mean(span)
def robust_mean(x, q=0.1):
x_med = np.median(x)
deviations = abs(x- x_med)
if max(deviations) == 0:
mask = np.ones(len(x), dtype='bool')
else:
threshold = np.quantile(deviations, 1-q)
mask = x[deviations<= threshold]
return np.mean(x[mask])
def rotate_image_and_mask(image, mask, direction):
mask_oriented = ndimage.rotate(mask.astype('int'), -direction, reshape=True).astype('bool')
idx_begin_x, idx_end_x = np.where(np.any(mask_oriented, axis=0))[0][np.array([0, -1])]
idx_begin_y, idx_end_y = np.where(np.any(mask_oriented, axis=1))[0][np.array([0, -1])]
img_oriented = ndimage.rotate(image, -direction, reshape=True) #[idx_begin_y:idx_end_y, idx_begin_x:idx_end_x]
return img_oriented, mask_oriented
class GranaAnalyser:
def __init__(self, weights_detector: str, weights_orientation: str, weights_period: str, period_sd_threshold_nm: float=2.5) -> None:
"""
Initializes the GranaAnalyser with specified weights for detection and measuring.
This method loads the weights for the grana detection and measuring algorithms
from the specified file paths. It also loads mock data for visualization and
analysis purposes.
Parameters:
weights_detector (str): The file path to the weights file for the grana detection algorithm.
weights_orientation (str): The file path to the weights file for the grana orientation algorithm.
weights_period (str): The file path to the weights file for the grana period algorithm.
"""
self.detector = YOLO(weights_detector)
self.orienter = PatchedPredictor(
StripsModelLumenWidth.load_from_checkpoint(weights_orientation, map_location='cpu').eval(),
normalization = dict(mean=0.250, std=0.135),
n_samples=32,
mask=None,
crop_size=64,
angle_confidence_threshold=0.2
)
self.measurement_px_per_nm = 1/0.768 # image scale required for measurement
self.period_measurer = PeriodMeasurer(
weights_period,
px_per_nm=self.measurement_px_per_nm,
sd_threshold_nm=period_sd_threshold_nm,
period_threshold_nm_min=14, period_threshold_nm_max=30
)
def get_grana_data(self, image, detections, scaler, border_margin=1, min_count=1) -> List[Granum]:
"""filter detections and create grana data"""
image_numpy = np.array(image)
if image_numpy.ndim == 3:
image_numpy = image_numpy[:,:,0]
mask_all = None
grana = []
for mask, confidence in zip(
detections.masks.data.cpu().numpy().astype('bool'),
detections.boxes.conf.cpu().numpy()
):
granum_mask = select_unique_mask(mask[scaler.unpad_slice])
# check if mask is empty after padding
if not np.any(granum_mask):
continue
granum_mask = ndimage.binary_fill_holes(granum_mask)
# check if touches boundary:
if (np.sum(granum_mask[:border_margin])>min_count) or \
(np.sum(granum_mask[-border_margin:])>min_count) or \
(np.sum(granum_mask[:,:border_margin])>min_count) or \
(np.sum(granum_mask[:,-border_margin:])>min_count):
continue
# check grana overlap
if mask_all is None:
mask_all = granum_mask
else:
intersection = mask_all & granum_mask
if intersection.sum() >= (granum_mask.sum() * 0.2):
continue
mask_all = mask_all | granum_mask
granum = Granum(
image = image,
mask = granum_mask,
scaler=scaler,
detection_confidence=float(confidence)
)
granum.image_numpy = image_numpy
grana.append(granum)
return grana
def measure_grana(self, grana: List[Granum], measurement_image: np.ndarray) -> List[Granum]:
"""measure grana: includes orientation detection, period detection and geometric measurements"""
for granum in grana:
measurement_mask = resize_with_cv2(granum.mask.astype(np.uint8), measurement_image.shape[:2], return_pil=False).astype('bool')
granum.bounding_box_slice = object_slice(measurement_mask)
granum.image_crop = measurement_image[granum.bounding_box_slice][:,:]
granum.mask_crop = measurement_mask[granum.bounding_box_slice]
# initialize measurements
granum.measurements = {}
# measure shape
granum.measurements['perimeter px'], granum.measurements['area px'] = measure_shape(granum.mask_crop)
# measrure orientation
orienter_predictions = self.orienter(granum.image_crop, granum.mask_crop)
granum.measurements['direction'] = orienter_predictions["est_angle"]
granum.measurements['direction confidence'] = orienter_predictions["est_angle_confidence"]
if not np.isnan(granum.measurements["direction"]):
img_oriented, mask_oriented = rotate_image_and_mask(granum.image_crop, granum.mask_crop, granum.measurements["direction"])
oriented_granum_slice = object_slice(mask_oriented)
granum.img_oriented = img_oriented[oriented_granum_slice]
granum.mask_oriented = mask_oriented[oriented_granum_slice]
granum.measurements['height px'] = calculate_height(granum.mask_oriented)
granum.measurements['GSI'] = calculate_gsi(
granum.measurements['perimeter px'],
granum.measurements['height px'],
granum.measurements['area px']
)
granum.measurements['diameter px'] = calculate_diameter(granum.mask_oriented)
oriented_granum_slice = object_slice(granum.mask_oriented)
granum.measurements["period nm"], granum.measurements["period SD nm"] = self.period_measurer(granum.img_oriented, granum.mask_oriented)
if not pd.isna(granum.measurements['period nm']):
granum.measurements['Number of layers'] = round(granum.measurements['height px']/ self.measurement_px_per_nm / granum.measurements['period nm'])
return grana
def extract_grana_data(self, grana: List[Granum]) -> pd.DataFrame:
"""collect and scale grana data"""
grana_data = []
for granum in grana:
granum_entry = {
'Granum ID': granum.id,
'detection confidence': granum.detection_confidence
}
# fill with None if absent:
for key in ['direction', 'Number of layers', 'GSI', 'period nm', 'period SD nm']:
granum_entry[key] = granum.measurements.get(key, None)
# scale linearly:
for key in ['height px', 'diameter px', 'perimeter px', 'perimeter px']:
granum_entry[f"{key[:-3]} nm"] = granum.measurements.get(key, np.nan) / self.measurement_px_per_nm
# scale quadratically
granum_entry['area nm^2'] = granum.measurements['area px'] / self.measurement_px_per_nm**2
grana_data.append(granum_entry)
return pd.DataFrame(grana_data)
def visualize_detections(self, grana: List[Granum], image: Image.Image) -> Image.Image:
visualization_longer_edge = 1024
scale = visualization_longer_edge/max(image.size)
visualization_size = (round(scale*image.size[0]), round(scale*image.size[1]))
visualization_image = np.array(image.resize(visualization_size).convert('RGB'))
if len(grana) > 0:
grana_mask = resize_with_cv2(
np.any(np.array([granum.mask for granum in grana]),axis=0).astype(np.uint8),
visualization_size[::-1],
return_pil=False
).astype('bool')
visualization_image[grana_mask]= (0.7*visualization_image[grana_mask] + 0.3*np.array([[[39, 179, 115]]])).astype(np.uint8)
for granum in grana:
scale = visualization_longer_edge/max(granum.mask.shape)
y, x = ndimage.center_of_mass(granum.mask)
cv2.putText(visualization_image, f'{granum.id}', org=(int(x*scale)-10, int(y*scale)+10), fontFace=cv2.FONT_HERSHEY_SIMPLEX , fontScale=1, color=(39, 179, 115),thickness = 2)
return Image.fromarray(visualization_image)
def generate_grana_images(self, grana: List[Granum], image_name: str ="") -> List[Image.Image]:
grana_images = {}
for granum in grana:
fig, ax = plt.subplots()
if granum.img_oriented is None:
image_to_plot = granum.image_crop
mask_to_plot = granum.mask_crop
extra_caption = " orientation and period unknown"
else:
image_to_plot = granum.img_oriented
mask_to_plot = granum.mask_oriented
extra_caption = ""
ax.imshow(0.5*255*(~mask_to_plot) +image_to_plot*(1-0.5*(~mask_to_plot)), cmap='gray', vmin=0, vmax=255)
ax.axis('off')
ax.set_title(f'[{granum.id}]{image_name}\n{extra_caption}')
granum_image = figure_to_pil(fig)
grana_images[granum.id] = granum_image
plt.close('all')
return grana_images
def format_data(self, grana_data: pd.DataFrame) -> pd.DataFrame:
rounding_roles = {'area nm^2': 0, 'perimeter nm': 1, 'diameter nm': 1, 'height nm': 1, 'period nm': 1, 'period SD nm': 2, 'GSI':2, 'direction': 1}
rounded_data = grana_data.round(rounding_roles)
columns_order = ['Granum ID', 'File name', 'area nm^2', 'perimeter nm', 'GSI','diameter nm', 'height nm', 'Number of layers','period nm', 'period SD nm', 'direction']
return rounded_data[columns_order]
def aggregate_data(self, grana_data: pd.DataFrame, confidence: Optional[float]=None) -> Dict:
if confidence is None:
filtered = grana_data
else:
filtered = grana_data.loc[grana_data['aggregated confidence'] >= confidence]
aggregation = filtered[['area nm^2', 'perimeter nm', 'diameter nm', 'height nm', 'Number of layers', 'period nm', 'GSI']].mean().to_dict()
aggregation_std = filtered[['area nm^2', 'perimeter nm', 'diameter nm', 'height nm', 'Number of layers', 'period nm', 'GSI']].std().to_dict()
aggregation_std = {f"{k} std": v for k, v in aggregation_std.items()}
aggregation_result = {**aggregation, **aggregation_std, 'N grana': len(filtered)}
return aggregation_result
def predict_on_single(self, image: Image.Image, scale: float, detection_confidence: float=0.25, granum_id_start=1, image_name: str = "") -> Tuple[List[Image.Image], pd.DataFrame, List[Image.Image]]:
"""
Predicts and aggregates data related to grana using a dictionary of images.
Parameters:
image (Image.Image): PIL Image object to be analyzed
scale (float): scale of the image: px per nm.
detection_confidence (float): The detection confidence threshold shape measurement
Returns:
Tuple[Image.Image, pandas.DataFrame, List[Image.Image]]:
A tuple containing:
- detection_visualization (Image.Image): PIL image representing
the detection visualizations.
- grana_data (pandas.DataFrame): A DataFrame containing the simulated granum data.
- grana_images (List[Image.Image]): A list of PIL images of the grana.
"""
# convert to grayscale
image = image.convert("L")
# detect
scaler = ScalerPadder(target_size=1024, target_short_edge_min=640)
scaled_image = scaler.transform(image, px_per_nm=scale)
detections = self.detector.predict(source=scaled_image, conf=detection_confidence)[0]
# get grana data
grana = self.get_grana_data(image, detections, scaler)
for granum_id, granum in enumerate(grana, start=granum_id_start):
granum.id = granum_id
# visualize detections
detection_visualization = self.visualize_detections(grana, image)
# measure grana
measurement_image_resize_factor = self.measurement_px_per_nm / scale
measurement_image_shape = (
int(image.size[1]*measurement_image_resize_factor),
int(image.size[0]*measurement_image_resize_factor)
)
measurement_image = resize_with_cv2( # numpy image in scale valid for measurement
image, measurement_image_shape, return_pil=False
)
grana = self.measure_grana(grana, measurement_image)
# pandas DataFrame
grana_data = self.extract_grana_data(grana)
# list of PIL images
grana_images = self.generate_grana_images(grana, image_name=image_name)
return detection_visualization, grana_data, grana_images
def predict(self, images: Dict[str, Image.Image], scale: float, detection_confidence: float=0.25, parameter_confidence: Optional[float]=None) -> Tuple[List[Image.Image], pd.DataFrame, List[Image.Image], Dict]:
"""
Predicts and aggregates data related to grana using a dictionary of images.
Parameters:
images (Dict[str, Image.Image]): A dictionary of PIL Image objects to be analyzed,
keyed by their names.
scale (float): scale of the image: px per nm
detection_confidence (float): The detection confidence threshold shape measurement
parameter_confidence (float): The confidence threshold used for data aggregation. Only
data with aggregated confidence above this threshold will
be considered.
Returns:
Tuple[List[Image.Image], pandas.DataFrame, List[Image.Image], Dict]:
A tuple containing:
- detection_visualizations (List[Image.Image]): A list of PIL images representing
the detection visualizations.
- grana_data (pandas.DataFrame): A DataFrame containing the simulated granum data.
- grana_images (List[Image.Image]): A list of PIL images of the grana.
- aggregated_data (Dict): A dictionary containing the aggregated data results.
"""
detection_visualizations_all = {}
grana_data_all = None
grana_images_all = {}
granum_id_start = 1
for image_name, image in images.items():
detection_visualization, grana_data, grana_images = self.predict_on_single(image, scale=scale, detection_confidence=detection_confidence, granum_id_start=granum_id_start, image_name=image_name)
granum_id_start += len(grana_data)
detection_visualizations_all[image_name] = detection_visualization
grana_images_all.update(grana_images)
grana_data['File name'] = image_name
if grana_data_all is None:
grana_data_all = grana_data
else:
# grana_data['Granum ID'] += len(grana_data_all)
grana_data_all = pd.concat([grana_data_all, grana_data])
# dict
# grana_data_all.to_csv('grana_data_all.csv', index=False)
aggregated_data = self.aggregate_data(grana_data_all, parameter_confidence)
formatted_grana_data = self.format_data(grana_data_all)
return detection_visualizations_all, formatted_grana_data, grana_images_all, aggregated_data
class GranaDetector(GranaAnalyser):
"""supplementary class for grana detection only
"""
def __init__(self, weights_detector: str, detector_config: Optional[str] = None, model_type="yolo") -> None:
if model_type == "yolo":
self.detector = YOLO(weights_detector)
elif model_type == "mmdetection":
self.detector = MMDetector(model=detector_config, weights=weights_detector)
else:
raise NotImplementedError()
def predict_on_single(self, image: Image.Image, scale: float, detection_confidence: float=0.25, granum_id_start=1, use_scaling=True, granum_border_margin=1, granum_border_min_count=1, scaler_sizes=(1024, 640)) -> List[Granum]:
# convert to grayscale
image = image.convert("L")
# detect
if use_scaling:
scaler = ScalerPadder(target_size=scaler_sizes[0], target_short_edge_min=scaler_sizes[1])
else:
#dummy scaler
scaler = ScalerPadder(target_size=max(image.size), target_short_edge_min=min(image.size), minimal_pad=0, pad_to_multiply=1)
scaled_image = scaler.transform(image, scale=scale)
detections = self.detector.predict(source=scaled_image, conf=detection_confidence)[0]
# get grana data
grana = self.get_grana_data(image, detections, scaler, border_margin=granum_border_margin, min_count=granum_border_min_count)
for i_granum, granum in enumerate(grana, start=1):
granum.id = i_granum
return grana