Spaces:
Sleeping
Sleeping
updatte
Browse files
app.py
CHANGED
@@ -9,7 +9,6 @@ from pinecone import Pinecone
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
@st.cache_resource()
|
11 |
def load_model():
|
12 |
-
|
13 |
# from google.colab import userdata
|
14 |
model_name_or_path = "CompendiumLabs/bge-large-en-v1.5-gguf"
|
15 |
model_basename = 'bge-large-en-v1.5-f32.gguf'
|
@@ -20,10 +19,10 @@ def load_model():
|
|
20 |
model = Llama(model_path, embedding=True)
|
21 |
|
22 |
st.success("Loaded NLP model from Hugging Face!") # 👈 Show a success message
|
23 |
-
apikey = st.secrets["apikey"]
|
24 |
pc = Pinecone(api_key=apikey)
|
25 |
index = pc.Index("law")
|
26 |
-
|
27 |
# pc = Pinecone(api_key=api_key)
|
28 |
# index = pc.Index("law")
|
29 |
model_2_name = "TheBloke/zephyr-7B-beta-GGUF"
|
@@ -31,7 +30,7 @@ def load_model():
|
|
31 |
model_path_model = hf_hub_download(
|
32 |
repo_id=model_2_name,
|
33 |
filename=model_2base_name,
|
34 |
-
)
|
35 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
36 |
llm = LlamaCpp(
|
37 |
model_path=model_path_model,
|
@@ -39,13 +38,13 @@ def load_model():
|
|
39 |
max_tokens=2500,
|
40 |
top_p=1,
|
41 |
callback_manager=callback_manager,
|
42 |
-
verbose=True,
|
43 |
n_ctx=2048,
|
44 |
n_threads = 2# Verbose is required to pass to the callback manager
|
45 |
)
|
46 |
-
st.success("loaded the second NLP model from Hugging Face!")
|
|
|
47 |
|
48 |
-
|
49 |
# prompt_template = "<|system|>\
|
50 |
# </s>\
|
51 |
# <|user|>\
|
@@ -56,7 +55,7 @@ def load_model():
|
|
56 |
|
57 |
return model, llm, index
|
58 |
|
59 |
-
|
60 |
st.title("Please ask your question on Lithuanian rules for foreigners.")
|
61 |
model,llm, index = load_model()
|
62 |
|
@@ -66,7 +65,7 @@ if question != "":
|
|
66 |
query = model.create_embedding(question)
|
67 |
st.write(query)
|
68 |
q = query['data'][0]['embedding']
|
69 |
-
|
70 |
response = index.query(
|
71 |
vector=q,
|
72 |
top_k=1,
|
@@ -75,4 +74,4 @@ if question != "":
|
|
75 |
)
|
76 |
response_t = response['matches'][0]['metadata']['text']
|
77 |
st.write(response_t)
|
78 |
-
st.header("Answer:")
|
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
@st.cache_resource()
|
11 |
def load_model():
|
|
|
12 |
# from google.colab import userdata
|
13 |
model_name_or_path = "CompendiumLabs/bge-large-en-v1.5-gguf"
|
14 |
model_basename = 'bge-large-en-v1.5-f32.gguf'
|
|
|
19 |
model = Llama(model_path, embedding=True)
|
20 |
|
21 |
st.success("Loaded NLP model from Hugging Face!") # 👈 Show a success message
|
22 |
+
apikey = st.secrets["apikey"]
|
23 |
pc = Pinecone(api_key=apikey)
|
24 |
index = pc.Index("law")
|
25 |
+
|
26 |
# pc = Pinecone(api_key=api_key)
|
27 |
# index = pc.Index("law")
|
28 |
model_2_name = "TheBloke/zephyr-7B-beta-GGUF"
|
|
|
30 |
model_path_model = hf_hub_download(
|
31 |
repo_id=model_2_name,
|
32 |
filename=model_2base_name,
|
33 |
+
)
|
34 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
35 |
llm = LlamaCpp(
|
36 |
model_path=model_path_model,
|
|
|
38 |
max_tokens=2500,
|
39 |
top_p=1,
|
40 |
callback_manager=callback_manager,
|
41 |
+
verbose=True,
|
42 |
n_ctx=2048,
|
43 |
n_threads = 2# Verbose is required to pass to the callback manager
|
44 |
)
|
45 |
+
st.success("loaded the second NLP model from Hugging Face!")
|
46 |
+
|
47 |
|
|
|
48 |
# prompt_template = "<|system|>\
|
49 |
# </s>\
|
50 |
# <|user|>\
|
|
|
55 |
|
56 |
return model, llm, index
|
57 |
|
58 |
+
|
59 |
st.title("Please ask your question on Lithuanian rules for foreigners.")
|
60 |
model,llm, index = load_model()
|
61 |
|
|
|
65 |
query = model.create_embedding(question)
|
66 |
st.write(query)
|
67 |
q = query['data'][0]['embedding']
|
68 |
+
|
69 |
response = index.query(
|
70 |
vector=q,
|
71 |
top_k=1,
|
|
|
74 |
)
|
75 |
response_t = response['matches'][0]['metadata']['text']
|
76 |
st.write(response_t)
|
77 |
+
st.header("Answer:")
|