Spaces:
Running
Running
import io | |
from hashlib import sha256 | |
from pathlib import Path | |
from typing import Callable, Literal, Tuple | |
import torch | |
import torchaudio | |
from loguru import logger | |
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture | |
from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text | |
from tools.schema import ServeReferenceAudio | |
class ReferenceLoader: | |
def __init__(self) -> None: | |
""" | |
Component of the TTSInferenceEngine class. | |
Loads and manages the cache for the reference audio and text. | |
""" | |
self.ref_by_id: dict = {} | |
self.ref_by_hash: dict = {} | |
# Make Pylance happy (attribut/method not defined...) | |
self.decoder_model: FireflyArchitecture | |
self.encode_reference: Callable | |
# Define the torchaudio backend | |
backends = torchaudio.list_audio_backends() | |
if "ffmpeg" in backends: | |
self.backend = "ffmpeg" | |
else: | |
self.backend = "soundfile" | |
def load_by_id( | |
self, | |
id: str, | |
use_cache: Literal["on", "off"], | |
) -> Tuple: | |
# Load the references audio and text by id | |
ref_folder = Path("references") / id | |
ref_folder.mkdir(parents=True, exist_ok=True) | |
ref_audios = list_files( | |
ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False | |
) | |
if use_cache == "off" or id not in self.ref_by_id: | |
# If the references are not already loaded, encode them | |
prompt_tokens = [ | |
self.encode_reference( | |
# decoder_model=self.decoder_model, | |
reference_audio=audio_to_bytes(str(ref_audio)), | |
enable_reference_audio=True, | |
) | |
for ref_audio in ref_audios | |
] | |
prompt_texts = [ | |
read_ref_text(str(ref_audio.with_suffix(".lab"))) | |
for ref_audio in ref_audios | |
] | |
self.ref_by_id[id] = (prompt_tokens, prompt_texts) | |
else: | |
# Reuse already encoded references | |
logger.info("Use same references") | |
prompt_tokens, prompt_texts = self.ref_by_id[id] | |
return prompt_tokens, prompt_texts | |
def load_by_hash( | |
self, | |
references: list[ServeReferenceAudio], | |
use_cache: Literal["on", "off"], | |
) -> Tuple: | |
# Load the references audio and text by hash | |
audio_hashes = [sha256(ref.audio).hexdigest() for ref in references] | |
cache_used = False | |
prompt_tokens, prompt_texts = [], [] | |
for i, ref in enumerate(references): | |
if use_cache == "off" or audio_hashes[i] not in self.ref_by_hash: | |
# If the references are not already loaded, encode them | |
prompt_tokens.append( | |
self.encode_reference( | |
reference_audio=ref.audio, | |
enable_reference_audio=True, | |
) | |
) | |
prompt_texts.append(ref.text) | |
self.ref_by_hash[audio_hashes[i]] = (prompt_tokens, prompt_texts) | |
else: | |
# Reuse already encoded references | |
prompt_tokens, prompt_texts = self.ref_by_hash[audio_hashes[i]] | |
cache_used = True | |
if cache_used: | |
logger.info("Use same references") | |
return prompt_tokens, prompt_texts | |
def load_audio(self, reference_audio, sr): | |
""" | |
Load the audio data from a file or bytes. | |
""" | |
if len(reference_audio) > 255 or not Path(reference_audio).exists(): | |
audio_data = reference_audio | |
reference_audio = io.BytesIO(audio_data) | |
waveform, original_sr = torchaudio.load(reference_audio, backend=self.backend) | |
if waveform.shape[0] > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
if original_sr != sr: | |
resampler = torchaudio.transforms.Resample( | |
orig_freq=original_sr, new_freq=sr | |
) | |
waveform = resampler(waveform) | |
audio = waveform.squeeze().numpy() | |
return audio | |