# Copyright (C) 2021 * Ltd. All rights reserved. # author : Sanghyeon Jo import torch import torch.nn as nn import torch.nn.functional as F class ASPPModule(nn.Module): def __init__(self, inplanes, planes, kernel_size, padding, dilation, norm_fn=None): super().__init__() self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False) self.bn = norm_fn(planes) self.relu = nn.ReLU(inplace=True) self.initialize([self.atrous_conv, self.bn]) def forward(self, x): x = self.atrous_conv(x) x = self.bn(x) return self.relu(x) def initialize(self, modules): for m in modules: if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class ASPP(nn.Module): def __init__(self, output_stride, norm_fn): super().__init__() inplanes = 2048 if output_stride == 16: dilations = [1, 6, 12, 18] elif output_stride == 8: dilations = [1, 12, 24, 36] self.aspp1 = ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], norm_fn=norm_fn) self.aspp2 = ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], norm_fn=norm_fn) self.aspp3 = ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], norm_fn=norm_fn) self.aspp4 = ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], norm_fn=norm_fn) self.global_avg_pool = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(inplanes, 256, 1, stride=1, bias=False), norm_fn(256), nn.ReLU(inplace=True), ) self.conv1 = nn.Conv2d(1280, 256, 1, bias=False) self.bn1 = norm_fn(256) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(0.5) self.initialize([self.conv1, self.bn1] + list(self.global_avg_pool.modules())) def forward(self, x): x1 = self.aspp1(x) x2 = self.aspp2(x) x3 = self.aspp3(x) x4 = self.aspp4(x) x5 = self.global_avg_pool(x) x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x1, x2, x3, x4, x5), dim=1) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.dropout(x) return x def initialize(self, modules): for m in modules: if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class Decoder(nn.Module): def __init__(self, num_classes, low_level_inplanes, norm_fn): super().__init__() self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False) self.bn1 = norm_fn(48) self.relu = nn.ReLU(inplace=True) self.classifier = nn.Sequential( nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False), norm_fn(256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), norm_fn(256), nn.ReLU(inplace=True), nn.Dropout(0.1), nn.Conv2d(256, num_classes, kernel_size=1, stride=1) ) self.initialize([self.conv1, self.bn1] + list(self.classifier.modules())) def forward(self, x, x_low_level): x_low_level = self.conv1(x_low_level) x_low_level = self.bn1(x_low_level) x_low_level = self.relu(x_low_level) x = F.interpolate(x, size=x_low_level.size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x, x_low_level), dim=1) x = self.classifier(x) return x def initialize(self, modules): for m in modules: if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()