import cv2 import random import numpy as np from PIL import Image def get_strided_size(orig_size, stride): return ((orig_size[0]-1)//stride+1, (orig_size[1]-1)//stride+1) def get_strided_up_size(orig_size, stride): strided_size = get_strided_size(orig_size, stride) return strided_size[0]*stride, strided_size[1]*stride def imshow(image, delay=0, mode='RGB', title='show'): if mode == 'RGB': demo_image = image[..., ::-1] else: demo_image = image cv2.imshow(title, demo_image) if delay >= 0: cv2.waitKey(delay) def transpose(image): return image.transpose((1, 2, 0)) def denormalize(image, mean=None, std=None, dtype=np.uint8, tp=True): if tp: image = transpose(image) if mean is not None: image = (image * std) + mean if dtype == np.uint8: image *= 255. return image.astype(np.uint8) else: return image def colormap(cam, shape=None, mode=cv2.COLORMAP_JET): if shape is not None: h, w, c = shape cam = cv2.resize(cam, (w, h)) cam = cv2.applyColorMap(cam, mode) return cam def decode_from_colormap(data, colors): ignore = (data == 255).astype(np.int32) mask = 1 - ignore data *= mask h, w = data.shape image = colors[data.reshape((h * w))].reshape((h, w, 3)) ignore = np.concatenate([ignore[..., np.newaxis], ignore[..., np.newaxis], ignore[..., np.newaxis]], axis=-1) image[ignore.astype(np.bool)] = 255 return image def normalize(cam, epsilon=1e-5): cam = np.maximum(cam, 0) max_value = np.max(cam, axis=(0, 1), keepdims=True) return np.maximum(cam - epsilon, 0) / (max_value + epsilon) def crf_inference(img, probs, t=10, scale_factor=1, labels=21): import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_softmax h, w = img.shape[:2] n_labels = labels d = dcrf.DenseCRF2D(w, h, n_labels) unary = unary_from_softmax(probs) unary = np.ascontiguousarray(unary) d.setUnaryEnergy(unary) d.addPairwiseGaussian(sxy=3/scale_factor, compat=3) d.addPairwiseBilateral(sxy=80/scale_factor, srgb=13, rgbim=np.copy(img), compat=10) Q = d.inference(t) return np.array(Q).reshape((n_labels, h, w)) def crf_with_alpha(ori_image, cams, alpha): # h, w, c -> c, h, w # cams = cams.transpose((2, 0, 1)) bg_score = np.power(1 - np.max(cams, axis=0, keepdims=True), alpha) bgcam_score = np.concatenate((bg_score, cams), axis=0) cams_with_crf = crf_inference(ori_image, bgcam_score, labels=bgcam_score.shape[0]) # return cams_with_crf.transpose((1, 2, 0)) return cams_with_crf def crf_inference_label(img, labels, t=10, n_labels=21, gt_prob=0.7): import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_labels h, w = img.shape[:2] d = dcrf.DenseCRF2D(w, h, n_labels) unary = unary_from_labels(labels, n_labels, gt_prob=gt_prob, zero_unsure=False) d.setUnaryEnergy(unary) d.addPairwiseGaussian(sxy=3, compat=3) d.addPairwiseBilateral(sxy=50, srgb=5, rgbim=np.ascontiguousarray(np.copy(img)), compat=10) q = d.inference(t) return np.argmax(np.array(q).reshape((n_labels, h, w)), axis=0)