##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## Email: zhanghang0704@gmail.com ## Copyright (c) 2020 ## ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """ResNeSt models""" import torch from .resnet import ResNet, Bottleneck __all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269'] _url_format = 'https://github.com/zhanghang1989/ResNeSt/releases/download/weights_step1/{}-{}.pth' _model_sha256 = {name: checksum for checksum, name in [ ('528c19ca', 'resnest50'), ('22405ba7', 'resnest101'), ('75117900', 'resnest200'), ('0cc87c48', 'resnest269'), ]} def short_hash(name): if name not in _model_sha256: raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) return _model_sha256[name][:8] resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for name in _model_sha256.keys() } def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50'], progress=True, check_hash=True)) return model def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest101'], progress=True, check_hash=True)) return model def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest200'], progress=True, check_hash=True)) return model def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 30, 48, 8], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest269'], progress=True, check_hash=True)) return model