import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo urls_dic = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } layers_dic = { 'resnet18' : [2, 2, 2, 2], 'resnet34' : [3, 4, 6, 3], 'resnet50' : [3, 4, 6, 3], 'resnet101' : [3, 4, 23, 3], 'resnet152' : [3, 8, 36, 3] } def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, batch_norm_fn=nn.BatchNorm2d): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = batch_norm_fn(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = batch_norm_fn(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, batch_norm_fn=nn.BatchNorm2d): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = batch_norm_fn(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) self.bn2 = batch_norm_fn(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = batch_norm_fn(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, strides=(2, 2, 2, 2), dilations=(1, 1, 1, 1), batch_norm_fn=nn.BatchNorm2d): self.batch_norm_fn = batch_norm_fn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=strides[0], padding=3, bias=False) self.bn1 = self.batch_norm_fn(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=1, dilation=dilations[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3]) self.inplanes = 1024 #self.avgpool = nn.AvgPool2d(7, stride=1) #self.fc = nn.Linear(512 * block.expansion, 1000) def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), self.batch_norm_fn(planes * block.expansion), ) layers = [block(self.inplanes, planes, stride, downsample, dilation=1, batch_norm_fn=self.batch_norm_fn)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, batch_norm_fn=self.batch_norm_fn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x