File size: 8,658 Bytes
c20a1af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import cv2
import random
import numpy as np

from PIL import Image

def convert_OpenCV_to_PIL(image):
    return Image.fromarray(image[..., ::-1])

def convert_PIL_to_OpenCV(image):
    return np.asarray(image)[..., ::-1]

class RandomResize:
    def __init__(self, min_image_size, max_image_size):
        self.min_image_size = min_image_size
        self.max_image_size = max_image_size

        self.modes = [Image.BICUBIC, Image.NEAREST]
    
    def __call__(self, image, mode=Image.BICUBIC):
        rand_image_size = random.randint(self.min_image_size, self.max_image_size)
        
        w, h = image.size
        if w < h:
            scale = rand_image_size / h
        else:
            scale = rand_image_size / w

        size = (int(round(w*scale)), int(round(h*scale)))
        if size[0] == w and size[1] == h:
            return image

        return image.resize(size, mode)

class RandomResize_For_Segmentation:
    def __init__(self, min_image_size, max_image_size):
        self.min_image_size = min_image_size
        self.max_image_size = max_image_size
        
        self.modes = [Image.BICUBIC, Image.NEAREST]
    
    def __call__(self, data):
        image, mask = data['image'], data['mask']

        rand_image_size = random.randint(self.min_image_size, self.max_image_size)
        
        w, h = image.size
        if w < h:
            scale = rand_image_size / h
        else:
            scale = rand_image_size / w
        
        size = (int(round(w*scale)), int(round(h*scale)))
        if size[0] == w and size[1] == h:
            pass
        else:
            data['image'] = image.resize(size, Image.BICUBIC)
            data['mask'] = mask.resize(size, Image.NEAREST)

        return data

class RandomHorizontalFlip:
    def __init__(self):
        pass

    def __call__(self, image):
        if bool(random.getrandbits(1)):
            return image.transpose(Image.FLIP_LEFT_RIGHT)
        return image

class RandomHorizontalFlip_For_Segmentation:
    def __init__(self):
        pass

    def __call__(self, data):
        image, mask = data['image'], data['mask']

        if bool(random.getrandbits(1)):
            data['image'] = image.transpose(Image.FLIP_LEFT_RIGHT)
            data['mask'] = mask.transpose(Image.FLIP_LEFT_RIGHT)

        return data

class Normalize:
    def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = np.asarray(image)
        norm_image = np.empty_like(image, np.float32)

        norm_image[..., 0] = (image[..., 0] / 255. - self.mean[0]) / self.std[0]
        norm_image[..., 1] = (image[..., 1] / 255. - self.mean[1]) / self.std[1]
        norm_image[..., 2] = (image[..., 2] / 255. - self.mean[2]) / self.std[2]
        
        return norm_image

class Normalize_For_Segmentation:
    def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
        self.mean = mean
        self.std = std

    def __call__(self, data):
        image, mask = data['image'], data['mask']
        
        image = np.asarray(image, dtype=np.float32)
        mask = np.asarray(mask, dtype=np.int64)

        norm_image = np.empty_like(image, np.float32)

        norm_image[..., 0] = (image[..., 0] / 255. - self.mean[0]) / self.std[0]
        norm_image[..., 1] = (image[..., 1] / 255. - self.mean[1]) / self.std[1]
        norm_image[..., 2] = (image[..., 2] / 255. - self.mean[2]) / self.std[2]

        data['image'] = norm_image
        data['mask'] = mask

        return data

class Top_Left_Crop:
    def __init__(self, crop_size, channels=3):
        self.bg_value = 0
        self.crop_size = crop_size
        self.crop_shape = (self.crop_size, self.crop_size, channels)

    def __call__(self, image):
        h, w, c = image.shape

        ch = min(self.crop_size, h)
        cw = min(self.crop_size, w)

        cropped_image = np.ones(self.crop_shape, image.dtype) * self.bg_value
        cropped_image[:ch, :cw] = image[:ch, :cw]
        
        return cropped_image

class Top_Left_Crop_For_Segmentation:
    def __init__(self, crop_size, channels=3):
        self.bg_value = 0
        self.crop_size = crop_size
        self.crop_shape = (self.crop_size, self.crop_size, channels)
        self.crop_shape_for_mask = (self.crop_size, self.crop_size)

    def __call__(self, data):
        image, mask = data['image'], data['mask']

        h, w, c = image.shape

        ch = min(self.crop_size, h)
        cw = min(self.crop_size, w)

        cropped_image = np.ones(self.crop_shape, image.dtype) * self.bg_value
        cropped_image[:ch, :cw] = image[:ch, :cw]
        
        cropped_mask = np.ones(self.crop_shape_for_mask, mask.dtype) * 255
        cropped_mask[:ch, :cw] = mask[:ch, :cw]

        data['image'] = cropped_image
        data['mask'] = cropped_mask

        return data

class RandomCrop:
    def __init__(self, crop_size, channels=3, with_bbox=False):
        self.bg_value = 0
        self.with_bbox = with_bbox
        self.crop_size = crop_size
        self.crop_shape = (self.crop_size, self.crop_size, channels)

    def get_random_crop_box(self, image):
        h, w, c = image.shape

        ch = min(self.crop_size, h)
        cw = min(self.crop_size, w)

        w_space = w - self.crop_size
        h_space = h - self.crop_size

        if w_space > 0:
            cont_left = 0
            img_left = random.randrange(w_space + 1)
        else:
            cont_left = random.randrange(-w_space + 1)
            img_left = 0

        if h_space > 0:
            cont_top = 0
            img_top = random.randrange(h_space + 1)
        else:
            cont_top = random.randrange(-h_space + 1)
            img_top = 0

        dst_bbox = {
            'xmin' : cont_left, 'ymin' : cont_top,
            'xmax' : cont_left+cw, 'ymax' : cont_top+ch
        }
        src_bbox = {
            'xmin' : img_left, 'ymin' : img_top,
            'xmax' : img_left+cw, 'ymax' : img_top+ch
        }

        return dst_bbox, src_bbox
    
    def __call__(self, image, bbox_dic=None):
        if bbox_dic is None:
            dst_bbox, src_bbox = self.get_random_crop_box(image)
        else:
            dst_bbox, src_bbox = bbox_dic['dst_bbox'], bbox_dic['src_bbox']
        
        cropped_image = np.ones(self.crop_shape, image.dtype) * self.bg_value
        cropped_image[dst_bbox['ymin']:dst_bbox['ymax'], dst_bbox['xmin']:dst_bbox['xmax']] = \
            image[src_bbox['ymin']:src_bbox['ymax'], src_bbox['xmin']:src_bbox['xmax']]

        if self.with_bbox:
            return cropped_image, {'dst_bbox':dst_bbox, 'src_bbox':src_bbox}
        else:
            return cropped_image

class RandomCrop_For_Segmentation(RandomCrop):
    def __init__(self, crop_size):
        super().__init__(crop_size)

        self.crop_shape_for_mask = (self.crop_size, self.crop_size)

    def __call__(self, data):
        image, mask = data['image'], data['mask']

        dst_bbox, src_bbox = self.get_random_crop_box(image)
        
        cropped_image = np.ones(self.crop_shape, image.dtype) * self.bg_value
        cropped_image[dst_bbox['ymin']:dst_bbox['ymax'], dst_bbox['xmin']:dst_bbox['xmax']] = \
            image[src_bbox['ymin']:src_bbox['ymax'], src_bbox['xmin']:src_bbox['xmax']]

        cropped_mask = np.ones(self.crop_shape_for_mask, mask.dtype) * 255
        cropped_mask[dst_bbox['ymin']:dst_bbox['ymax'], dst_bbox['xmin']:dst_bbox['xmax']] = \
            mask[src_bbox['ymin']:src_bbox['ymax'], src_bbox['xmin']:src_bbox['xmax']]
        
        data['image'] = cropped_image
        data['mask'] = cropped_mask
        
        return data

class Transpose:
    def __init__(self):
        pass
        
    def __call__(self, image):
        return image.transpose((2, 0, 1))

class Transpose_For_Segmentation:
    def __init__(self):
        pass
        
    def __call__(self, data):
        # h, w, c -> c, h, w
        data['image'] = data['image'].transpose((2, 0, 1))
        return data

class Resize_For_Mask:
    def __init__(self, size):
        self.size = (size, size)
    
    def __call__(self, data):
        mask = Image.fromarray(data['mask'].astype(np.uint8))
        mask = mask.resize(self.size, Image.NEAREST)
        data['mask'] = np.asarray(mask, dtype=np.uint64)
        return data