import streamlit as st from PIL import Image from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer import torch # Initialize the image-to-text pipeline and models def load_models(): # Make sure to use the correct model names and tokenizer image_pipeline = pipeline("image-to-text", model="microsoft/trocr-large-printed") phishing_model = AutoModelForSequenceClassification.from_pretrained("kithangw/phishing_link_detection1", num_labels=2) phishing_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") return image_pipeline, phishing_model, phishing_tokenizer # Define the phishing check function def check_phishing(phishing_model, phishing_tokenizer, url_for_recognize): link_token = phishing_tokenizer(url_for_recognize, max_length=512, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): # Disable gradient calculation for inference output = phishing_model(**link_token) probabilities = torch.nn.functional.softmax(output.logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=-1).item() predicted_prob = probabilities[0, predicted_class].item() labels = ['Not Phishing', 'Phishing'] prediction_label = labels[predicted_class] sentence = f"The URL '{url_for_recognize}' is classified as '{prediction_label}' with a probability of {predicted_prob:.2f}." return sentence def main(): # Load models image_pipeline, phishing_model, phishing_tokenizer = load_models() # Streamlit interface st.title("Phishing URL Detection from Image") # File uploader to scan the image uploaded_image = st.file_uploader("Upload an image of the URL", type=["png", "jpg", "jpeg"]) if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption='Uploaded URL Image', use_column_width=True) try: # Process the image with the OCR pipeline ocr_result = image_pipeline(image)[0]['generated_text'].replace(" ", "").lower() # Store the verified URL in session state for access later st.session_state['verified_url'] = st.text_input("Recognized URL", ocr_result) except Exception as e: st.error(f"An error occurred during image processing: {e}") if st.button('Detect Phishing'): # Check for 'verified_url' in session state instead of local variable if 'verified_url' in st.session_state and st.session_state['verified_url']: result = check_phishing(phishing_model, phishing_tokenizer, st.session_state['verified_url']) st.write(result) else: st.error("Please upload an image to detect the URL and check for phishing.") # Run the main function if __name__ == "__main__": main()