Spaces:
Runtime error
Runtime error
File size: 32,554 Bytes
82ccde1 df0cb94 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 df0cb94 e1eeb11 df0cb94 82ccde1 e1eeb11 82ccde1 e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 82ccde1 df0cb94 74fa76b df0cb94 82ccde1 df0cb94 74fa76b df0cb94 74fa76b df0cb94 82ccde1 df0cb94 74fa76b df0cb94 82ccde1 df0cb94 74fa76b df0cb94 e1eeb11 df0cb94 e1eeb11 74fa76b 82ccde1 e1eeb11 82ccde1 df0cb94 74fa76b df0cb94 82ccde1 df0cb94 74fa76b df0cb94 e1eeb11 df0cb94 e1eeb11 74fa76b 82ccde1 df0cb94 74fa76b df0cb94 82ccde1 df0cb94 74fa76b df0cb94 e1eeb11 df0cb94 e1eeb11 74fa76b 82ccde1 e1eeb11 82ccde1 e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 82ccde1 e1eeb11 82ccde1 e1eeb11 74fa76b e1eeb11 74fa76b e1eeb11 74fa76b 82ccde1 e1eeb11 82ccde1 e1eeb11 82ccde1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import time
import numpy as np
import pandas as pd
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_extras.add_vertical_space import add_vertical_space
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import LlamaCpp
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.common.exceptions import NoSuchElementException
import os
import warnings
warnings.filterwarnings('ignore')
def initialize_llm():
"""Initialize the local LLM model with optimized parameters for better performance"""
try:
model_path = "models/llama-2-7b-chat.Q4_K_M.gguf"
if not os.path.exists(model_path):
st.error(f"Model file not found at {model_path}")
return None
st.info("Loading LLM model... This may take a few moments.")
llm = LlamaCpp(
model_path=model_path,
temperature=0.7,
max_tokens=2000,
top_p=0.9,
verbose=True,
n_ctx=2048,
n_threads=4,
n_batch=512,
n_gpu_layers=0,
f16_kv=True,
seed=42
)
return llm
except Exception as e:
st.error(f"Error initializing LLM: {str(e)}")
return None
def streamlit_config():
st.set_page_config(page_title='Talent Track By AI', layout="wide")
page_background_color = """
<style>
[data-testid="stHeader"]
{
background: rgba(0,0,0,0);
}
</style>
"""
st.markdown(page_background_color, unsafe_allow_html=True)
st.markdown(f'<h1 style="text-align: center;">Talent Track By AI</h1>', unsafe_allow_html=True)
def process_resume(pdf):
if pdf is not None:
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.local_llm(chunks=pdf_chunks, analyze=summary_prompt)
if summary:
st.session_state['resume_data'] = {
'pdf': pdf,
'chunks': pdf_chunks,
'summary': summary
}
return True
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
return False
class resume_analyzer:
def pdf_to_chunks(pdf):
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=700,
chunk_overlap=200,
length_function=len)
chunks = text_splitter.split_text(text=text)
return chunks
def local_llm(chunks, analyze):
try:
# Initialize embeddings with error handling
st.info("Initializing embeddings...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create vector store with error handling
st.info("Creating vector store...")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
length_function=len
)
split_chunks = []
for chunk in chunks:
split_chunks.extend(text_splitter.split_text(chunk))
vectorstores = FAISS.from_texts(split_chunks, embedding=embeddings)
docs = vectorstores.similarity_search(query=analyze, k=3)
# Get LLM instance
st.info("Getting LLM instance...")
llm = initialize_llm()
if not llm:
st.error("Failed to initialize LLM")
return None
# Create and run the chain
st.info("Running analysis...")
chain = load_qa_chain(llm=llm, chain_type='stuff')
response = chain.run(input_documents=docs, question=analyze)
return response
except Exception as e:
st.error(f"Error in LLM processing: {str(e)}")
return None
def summary_prompt(query_with_chunks):
query = f''' need to detailed summarization of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_summary():
with st.form(key='Summary'):
add_vertical_space(1)
if 'resume_data' not in st.session_state:
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(2)
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
else:
st.info("Using previously uploaded resume")
submit = st.form_submit_button(label='Analyze Again')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if 'resume_data' not in st.session_state:
if pdf is not None:
if process_resume(pdf):
st.markdown(f'<h4 style="color: orange;">Summary:</h4>', unsafe_allow_html=True)
st.write(st.session_state['resume_data']['summary'])
else:
st.markdown(f'<h4 style="color: orange;">Summary:</h4>', unsafe_allow_html=True)
st.write(st.session_state['resume_data']['summary'])
def strength_prompt(query_with_chunks):
query = f'''need to detailed analysis and explain of the strength of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_strength():
with st.form(key='Strength'):
add_vertical_space(1)
if 'resume_data' not in st.session_state:
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(2)
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
else:
st.info("Using previously uploaded resume")
submit = st.form_submit_button(label='Analyze Again')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if 'resume_data' not in st.session_state:
if pdf is not None:
if process_resume(pdf):
strength_prompt = resume_analyzer.strength_prompt(query_with_chunks=st.session_state['resume_data']['summary'])
strength = resume_analyzer.local_llm(chunks=st.session_state['resume_data']['chunks'], analyze=strength_prompt)
if strength:
st.markdown(f'<h4 style="color: orange;">Strength:</h4>', unsafe_allow_html=True)
st.write(strength)
else:
strength_prompt = resume_analyzer.strength_prompt(query_with_chunks=st.session_state['resume_data']['summary'])
strength = resume_analyzer.local_llm(chunks=st.session_state['resume_data']['chunks'], analyze=strength_prompt)
if strength:
st.markdown(f'<h4 style="color: orange;">Strength:</h4>', unsafe_allow_html=True)
st.write(strength)
def weakness_prompt(query_with_chunks):
query = f'''need to detailed analysis and explain of the weakness of below resume and how to improve make a better resume.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_weakness():
with st.form(key='Weakness'):
add_vertical_space(1)
if 'resume_data' not in st.session_state:
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(2)
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
else:
st.info("Using previously uploaded resume")
submit = st.form_submit_button(label='Analyze Again')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if 'resume_data' not in st.session_state:
if pdf is not None:
if process_resume(pdf):
weakness_prompt = resume_analyzer.weakness_prompt(query_with_chunks=st.session_state['resume_data']['summary'])
weakness = resume_analyzer.local_llm(chunks=st.session_state['resume_data']['chunks'], analyze=weakness_prompt)
if weakness:
st.markdown(f'<h4 style="color: orange;">Weakness and Suggestions:</h4>', unsafe_allow_html=True)
st.write(weakness)
else:
weakness_prompt = resume_analyzer.weakness_prompt(query_with_chunks=st.session_state['resume_data']['summary'])
weakness = resume_analyzer.local_llm(chunks=st.session_state['resume_data']['chunks'], analyze=weakness_prompt)
if weakness:
st.markdown(f'<h4 style="color: orange;">Weakness and Suggestions:</h4>', unsafe_allow_html=True)
st.write(weakness)
def job_title_prompt(query_with_chunks):
query = f''' what are the job roles i apply to likedin based on below?
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def job_title_suggestion():
with st.form(key='Job Titles'):
add_vertical_space(1)
if 'resume_data' not in st.session_state:
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(2)
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
else:
st.info("Using previously uploaded resume")
submit = st.form_submit_button(label='Analyze Again')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if 'resume_data' not in st.session_state:
if pdf is not None:
if process_resume(pdf):
job_title_prompt = resume_analyzer.job_title_prompt(query_with_chunks=st.session_state['resume_data']['summary'])
job_title = resume_analyzer.local_llm(chunks=st.session_state['resume_data']['chunks'], analyze=job_title_prompt)
if job_title:
st.markdown(f'<h4 style="color: orange;">Job Titles:</h4>', unsafe_allow_html=True)
st.write(job_title)
else:
job_title_prompt = resume_analyzer.job_title_prompt(query_with_chunks=st.session_state['resume_data']['summary'])
job_title = resume_analyzer.local_llm(chunks=st.session_state['resume_data']['chunks'], analyze=job_title_prompt)
if job_title:
st.markdown(f'<h4 style="color: orange;">Job Titles:</h4>', unsafe_allow_html=True)
st.write(job_title)
class linkedin_scraper:
@staticmethod
def webdriver_setup():
"""Set up Chrome webdriver with enhanced anti-detection measures"""
try:
options = webdriver.ChromeOptions()
# Basic options
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
options.add_argument('--disable-gpu')
options.add_argument('--disable-extensions')
options.add_argument('--disable-notifications')
# Window size and display
options.add_argument('--window-size=1920,1080')
options.add_argument('--start-maximized')
# Enhanced privacy and security settings
options.add_argument('--disable-blink-features=AutomationControlled')
options.add_argument('--disable-web-security')
options.add_argument('--allow-running-insecure-content')
options.add_argument('--ignore-certificate-errors')
options.add_argument('--ignore-ssl-errors')
# Random user agent
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Edge/120.0.0.0'
]
user_agent = np.random.choice(user_agents)
options.add_argument(f'--user-agent={user_agent}')
# Experimental options
options.add_experimental_option('excludeSwitches', ['enable-automation', 'enable-logging'])
options.add_experimental_option('useAutomationExtension', False)
# Create driver
driver = webdriver.Chrome(options=options)
# Additional JavaScript to avoid detection
driver.execute_cdp_cmd('Network.setUserAgentOverride', {"userAgent": user_agent})
# Modify navigator properties
driver.execute_script("Object.defineProperty(navigator, 'webdriver', {get: () => undefined})")
driver.execute_script("Object.defineProperty(navigator, 'languages', {get: () => ['en-US', 'en']})")
driver.execute_script("Object.defineProperty(navigator, 'plugins', {get: () => [1, 2, 3, 4, 5]})")
# Set viewport and window size
driver.execute_cdp_cmd('Emulation.setDeviceMetricsOverride', {
'mobile': False,
'width': 1920,
'height': 1080,
'deviceScaleFactor': 1,
})
return driver
except Exception as e:
st.error(f"Failed to initialize Chrome driver: {str(e)}")
st.info("Please ensure Chrome browser is installed and updated to the latest version")
return None
@staticmethod
def get_userinput():
"""Get job search parameters from user"""
job_title = st.text_input('Enter Job Titles (comma separated):', 'Data Scientist')
job_location = st.text_input('Enter Job Location:', 'India')
job_count = st.number_input('Enter Number of Jobs to Scrape (max 100):', min_value=1, max_value=100, value=2)
return job_title.split(','), job_location, job_count
@staticmethod
def build_url(job_title, job_location):
"""Build LinkedIn search URL"""
formatted_title = '%20'.join(job_title[0].strip().split()) # Use first job title only
formatted_location = '%20'.join(job_location.split())
return f"https://www.linkedin.com/jobs/search?keywords={formatted_title}&location={formatted_location}"
@staticmethod
def scroll_page(driver, job_count):
"""Scroll page to load more jobs"""
try:
st.info("Scrolling page to load more jobs...")
# Calculate number of scrolls needed (25 jobs per scroll approximately)
scrolls = min(job_count // 25 + 1, 4)
for i in range(scrolls):
st.info(f"Scroll attempt {i+1}/{scrolls}")
# Scroll to bottom
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(4) # Wait for content to load
try:
# Try to click "Show more" button if present
show_more_buttons = driver.find_elements(by=By.CSS_SELECTOR, value=[
"button.infinite-scroller__show-more-button",
"button.see-more-jobs",
"button[data-tracking-control-name='infinite-scroller_show-more']"
])
for button in show_more_buttons:
if button.is_displayed():
driver.execute_script("arguments[0].click();", button)
time.sleep(3) # Wait for new content
break
except Exception as e:
st.warning(f"Could not find or click 'Show more' button: {str(e)}")
# Additional wait after last scroll
if i == scrolls - 1:
time.sleep(5)
except Exception as e:
st.warning(f"Error during page scrolling: {str(e)}")
@staticmethod
def scrape_jobs(driver, job_count):
"""Scrape job listings from LinkedIn with updated selectors"""
jobs_data = {
'company_name': [],
'job_title': [],
'location': [],
'job_url': []
}
try:
# Wait for job cards to load with explicit wait
st.info("Waiting for page to load...")
time.sleep(8) # Increased initial wait time
# Try multiple selectors for job cards
selectors = [
"div.job-card-container",
"li.jobs-search-results__list-item",
"div.base-card",
"div.job-search-card",
"li.jobs-search-results-list__list-item"
]
job_cards = []
for selector in selectors:
try:
job_cards = driver.find_elements(by=By.CSS_SELECTOR, value=selector)
if job_cards:
st.success(f"Found job cards using selector: {selector}")
break
except:
continue
if not job_cards:
st.error("Could not find any job listings. LinkedIn might have updated their page structure.")
return pd.DataFrame(jobs_data)
# Limit to requested number
job_cards = job_cards[:job_count]
st.info(f"Processing {len(job_cards)} job cards...")
for card in job_cards:
try:
# Company name selectors
company_selectors = [
".job-card-container__company-name",
".base-search-card__subtitle",
".company-name",
"span[data-tracking-control-name='public_jobs_company_name']",
".job-card-container__primary-description"
]
# Job title selectors
title_selectors = [
".job-card-container__title",
".base-search-card__title",
".job-card-list__title",
"h3.base-search-card__title",
".job-search-card__title"
]
# Location selectors
location_selectors = [
".job-card-container__metadata-item",
".base-search-card__metadata",
".job-search-card__location",
"span[data-tracking-control-name='public_jobs_job-location']",
".job-card-container__metadata-wrapper"
]
# Try to find company name
company = None
for selector in company_selectors:
try:
element = card.find_element(by=By.CSS_SELECTOR, value=selector)
company = element.text.strip()
if company:
break
except:
continue
# Try to find job title
title = None
for selector in title_selectors:
try:
element = card.find_element(by=By.CSS_SELECTOR, value=selector)
title = element.text.strip()
if title:
break
except:
continue
# Try to find location
location = None
for selector in location_selectors:
try:
element = card.find_element(by=By.CSS_SELECTOR, value=selector)
location = element.text.strip()
if location:
break
except:
continue
# Try to find URL
try:
url = card.find_element(by=By.CSS_SELECTOR, value="a").get_attribute("href")
except:
try:
url = card.find_element(by=By.CSS_SELECTOR, value="a.base-card__full-link").get_attribute("href")
except:
url = None
if all([company, title, location, url]):
jobs_data['company_name'].append(company)
jobs_data['job_title'].append(title)
jobs_data['location'].append(location)
jobs_data['job_url'].append(url)
st.success(f"Successfully scraped job: {title} at {company}")
except Exception as e:
st.warning(f"Failed to scrape a job card: {str(e)}")
continue
if not jobs_data['company_name']:
st.error("Could not extract any job information. LinkedIn might be blocking automated access.")
except Exception as e:
st.error(f"Error during job scraping: {str(e)}")
return pd.DataFrame(jobs_data)
@staticmethod
def display_results(df):
"""Display scraped job results"""
if df.empty:
st.error("No jobs were found. Please try again with different search parameters.")
return
st.markdown('### π Scraped Job Listings')
# Display summary statistics
st.markdown(f"**Total Jobs Found:** {len(df)}")
st.markdown(f"**Unique Companies:** {df['company_name'].nunique()}")
st.markdown(f"**Locations Covered:** {df['location'].nunique()}")
# Display the dataframe
st.dataframe(df)
# Add download button
csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
"Download Results as CSV",
csv,
"linkedin_jobs.csv",
"text/csv",
key='download-csv'
)
def main():
st.markdown('## π LinkedIn Job Search')
job_titles, job_location, job_count = linkedin_scraper.get_userinput()
if st.button('Start Scraping'):
with st.spinner('Scraping LinkedIn jobs...'):
try:
driver = linkedin_scraper.webdriver_setup()
if driver is None:
return
url = linkedin_scraper.build_url(job_titles, job_location)
st.info(f"Searching: {url}")
driver.get(url)
time.sleep(5) # Increased initial wait time
linkedin_scraper.scroll_page(driver, job_count)
df = linkedin_scraper.scrape_jobs(driver, job_count)
driver.quit()
if not df.empty:
linkedin_scraper.display_results(df)
else:
st.error('No jobs found matching your criteria. Try different search terms or location.')
except Exception as e:
st.error(f'An error occurred while scraping: {str(e)}')
if 'driver' in locals():
driver.quit()
class career_chatbot:
def initialize_session_state():
# Initialize session state variables for the chatbot
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "I'm your Career & Resume Assistant! Ask me anything about job searching, resume writing, interview preparation, or career development."}
]
if "conversation_memory" not in st.session_state:
st.session_state.conversation_memory = ConversationBufferMemory(return_messages=True)
if "resume_data" not in st.session_state:
st.session_state.resume_data = None
def setup_chatbot_ui():
with st.container():
st.markdown(f'<h3 style="color: orange; text-align: center;">Career Advisor Chatbot</h3>', unsafe_allow_html=True)
# Option to upload resume to provide context for the chatbot
with st.expander("Upload Resume for Context (Optional)"):
pdf = st.file_uploader(label='Upload Resume', type='pdf', key="chatbot_resume")
if pdf is not None and st.button("Process Resume"):
with st.spinner('Processing resume for context...'):
try:
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.local_llm(chunks=pdf_chunks, analyze=summary_prompt)
if summary:
st.session_state.resume_data = summary
st.success("Resume processed successfully! The chatbot now has context from your resume.")
except Exception as e:
st.error(f"Error processing resume: {e}")
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def create_system_prompt():
base_prompt = """You are a specialized career and job-search assistant. Your expertise is limited to:
1. Resume writing, analysis, and improvement
2. Job search strategies and techniques
3. Interview preparation and tips
4. Career development advice
5. LinkedIn profile optimization
6. Professional networking guidance
7. Salary negotiation tactics
8. Professional skill development recommendations
Answer questions ONLY related to these topics. For any off-topic questions, politely redirect the conversation back to career-related topics.
Your responses should be helpful, specific, and actionable. Use bullet points for clarity when appropriate.
"""
# Add resume context if available
if st.session_state.resume_data:
resume_context = f"\nThe user has provided a resume with the following information:\n{st.session_state.resume_data}\n\nUse this context to provide personalized advice when relevant."
return base_prompt + resume_context
else:
return base_prompt
def process_user_input():
# Get user input and clear the input box
user_input = st.chat_input("Ask me about careers, job search, or resume advice...")
if user_input:
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": user_input})
# Display user message
with st.chat_message("user"):
st.write(user_input)
# Generate response using the chatbot
try:
with st.spinner("Thinking..."):
llm = initialize_llm()
if not llm:
raise Exception("Failed to initialize LLM")
# Update conversation memory
st.session_state.conversation_memory.chat_memory.add_user_message(user_input)
system_prompt = career_chatbot.create_system_prompt()
chat_history = st.session_state.conversation_memory.buffer
# Format prompt with system instructions and context
prompt = f"""
{system_prompt}
Chat History: {chat_history}
Human: {user_input}
Assistant:"""
response = llm.predict(prompt)
# Add assistant response to memory
st.session_state.conversation_memory.chat_memory.add_ai_message(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# Display assistant response
with st.chat_message("assistant"):
st.write(response)
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
st.error(error_msg)
st.session_state.messages.append({"role": "assistant", "content": "I'm sorry, I encountered an error. Please try again."})
def main():
career_chatbot.initialize_session_state()
career_chatbot.setup_chatbot_ui()
career_chatbot.process_user_input()
# Streamlit Configuration Setup
streamlit_config()
add_vertical_space(2)
with st.sidebar:
add_vertical_space(4)
option = option_menu(menu_title='', options=['Summary', 'Strength', 'Weakness', 'Job Titles', 'Linkedin Jobs', 'Career Chat'],
icons=['house-fill', 'database-fill', 'pass-fill', 'list-ul', 'linkedin', 'chat-dots-fill'])
if option == 'Summary':
resume_analyzer.resume_summary()
elif option == 'Strength':
resume_analyzer.resume_strength()
elif option == 'Weakness':
resume_analyzer.resume_weakness()
elif option == 'Job Titles':
resume_analyzer.job_title_suggestion()
elif option == 'Linkedin Jobs':
linkedin_scraper.main()
elif option == 'Career Chat':
career_chatbot.main() |