Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import os
|
2 |
-
import time
|
3 |
import gradio as gr
|
4 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
5 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
6 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
from llama_index.llms.groq import Groq
|
8 |
from llama_parse import LlamaParse
|
9 |
-
from mixedbread_ai.core.api_error import ApiError
|
10 |
|
11 |
# API keys
|
12 |
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
@@ -18,7 +15,6 @@ if not (llama_cloud_key and groq_key and mxbai_key):
|
|
18 |
# Model names
|
19 |
llm_model_name = "llama-3.1-70b-versatile"
|
20 |
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
21 |
-
fallback_embed_model = "sentence-transformers/all-MiniLM-L6-v2" # Fallback model
|
22 |
|
23 |
# Initialize the parser
|
24 |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
@@ -41,25 +37,8 @@ file_extractor = {
|
|
41 |
}
|
42 |
|
43 |
# Initialize models with error handling
|
44 |
-
def initialize_embed_model(max_retries=3, delay=2):
|
45 |
-
for attempt in range(max_retries):
|
46 |
-
try:
|
47 |
-
return MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
|
48 |
-
except ApiError as e:
|
49 |
-
if attempt == max_retries - 1:
|
50 |
-
print(f"Failed to initialize Mixedbread AI embedding after {max_retries} attempts: {str(e)}")
|
51 |
-
print("Falling back to local HuggingFace embedding model.")
|
52 |
-
return HuggingFaceEmbedding(model_name=fallback_embed_model)
|
53 |
-
time.sleep(delay)
|
54 |
-
except Exception as e:
|
55 |
-
print(f"Unexpected error initializing embedding model: {str(e)}")
|
56 |
-
if attempt == max_retries - 1:
|
57 |
-
print("Falling back to local HuggingFace embedding model.")
|
58 |
-
return HuggingFaceEmbedding(model_name=fallback_embed_model)
|
59 |
-
time.sleep(delay)
|
60 |
-
|
61 |
try:
|
62 |
-
embed_model =
|
63 |
llm = Groq(model=llm_model_name, api_key=groq_key)
|
64 |
except Exception as e:
|
65 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
@@ -68,7 +47,7 @@ except Exception as e:
|
|
68 |
vector_index = None
|
69 |
|
70 |
# File processing function
|
71 |
-
def load_files(file_path: str
|
72 |
global vector_index
|
73 |
if not file_path:
|
74 |
return "No file path provided. Please upload a file."
|
@@ -82,25 +61,14 @@ def load_files(file_path: str, max_retries=3, delay=2):
|
|
82 |
input_files=[file_path],
|
83 |
file_extractor=file_extractor
|
84 |
).load_data()
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
embed_model=embed_model
|
92 |
-
)
|
93 |
-
filename = os.path.basename(file_path)
|
94 |
-
return f"Ready to provide responses based on: {filename}"
|
95 |
-
except ApiError as e:
|
96 |
-
if attempt == max_retries - 1:
|
97 |
-
return f"Error processing file after {max_retries} attempts: {str(e)}"
|
98 |
-
print(f"Attempt {attempt + 1} failed: {str(e)}. Retrying in {delay} seconds...")
|
99 |
-
time.sleep(delay)
|
100 |
-
except Exception as e:
|
101 |
-
return f"Unexpected error processing file: {str(e)}"
|
102 |
except Exception as e:
|
103 |
-
return f"Error
|
104 |
|
105 |
# Respond function
|
106 |
def respond(message, history):
|
@@ -147,7 +115,7 @@ with gr.Blocks(
|
|
147 |
with gr.Column(scale=3):
|
148 |
chatbot = gr.ChatInterface(
|
149 |
fn=respond,
|
150 |
-
chatbot=gr.Chatbot(height=300, type="messages"),
|
151 |
theme="soft",
|
152 |
show_progress="full",
|
153 |
textbox=gr.Textbox(
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
4 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
|
|
5 |
from llama_index.llms.groq import Groq
|
6 |
from llama_parse import LlamaParse
|
|
|
7 |
|
8 |
# API keys
|
9 |
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
|
|
15 |
# Model names
|
16 |
llm_model_name = "llama-3.1-70b-versatile"
|
17 |
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
|
|
18 |
|
19 |
# Initialize the parser
|
20 |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
|
|
37 |
}
|
38 |
|
39 |
# Initialize models with error handling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
+
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
|
42 |
llm = Groq(model=llm_model_name, api_key=groq_key)
|
43 |
except Exception as e:
|
44 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
|
|
47 |
vector_index = None
|
48 |
|
49 |
# File processing function
|
50 |
+
def load_files(file_path: str):
|
51 |
global vector_index
|
52 |
if not file_path:
|
53 |
return "No file path provided. Please upload a file."
|
|
|
61 |
input_files=[file_path],
|
62 |
file_extractor=file_extractor
|
63 |
).load_data()
|
64 |
+
vector_index = VectorStoreIndex.from_documents(
|
65 |
+
document,
|
66 |
+
embed_model=embed_model
|
67 |
+
)
|
68 |
+
filename = os.path.basename(file_path)
|
69 |
+
return f"Ready to provide responses based on: {filename}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
except Exception as e:
|
71 |
+
return f"Error processing file: {str(e)}"
|
72 |
|
73 |
# Respond function
|
74 |
def respond(message, history):
|
|
|
115 |
with gr.Column(scale=3):
|
116 |
chatbot = gr.ChatInterface(
|
117 |
fn=respond,
|
118 |
+
chatbot=gr.Chatbot(height=300, type="messages"), # Fixed deprecated warning
|
119 |
theme="soft",
|
120 |
show_progress="full",
|
121 |
textbox=gr.Textbox(
|