Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -31,7 +31,6 @@ from src.utils.crop_face_single import crop_face
|
|
31 |
from src.audio2vid import get_headpose_temp, smooth_pose_seq
|
32 |
from src.utils.frame_interpolation import init_frame_interpolation_model, batch_images_interpolation_tool
|
33 |
|
34 |
-
|
35 |
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
36 |
if config.weight_dtype == "fp16":
|
37 |
weight_dtype = torch.float16
|
@@ -99,7 +98,7 @@ pipe = pipe.to("cuda", dtype=weight_dtype)
|
|
99 |
frame_inter_model = init_frame_interpolation_model()
|
100 |
|
101 |
@spaces.GPU
|
102 |
-
def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=60, seed=42):
|
103 |
fps = 30
|
104 |
cfg = 3.5
|
105 |
fi_step = 3
|
@@ -161,16 +160,9 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
161 |
pose_images.append(lmk_img)
|
162 |
|
163 |
pose_list = []
|
164 |
-
# pose_tensor_list = []
|
165 |
-
|
166 |
-
# pose_transform = transforms.Compose(
|
167 |
-
# [transforms.Resize((height, width)), transforms.ToTensor()]
|
168 |
-
# )
|
169 |
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
|
170 |
args_L = min(args_L, 90)
|
171 |
for pose_image_np in pose_images[: args_L : fi_step]:
|
172 |
-
# pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
|
173 |
-
# pose_tensor_list.append(pose_transform(pose_image_pil))
|
174 |
pose_image_np = cv2.resize(pose_image_np, (width, height))
|
175 |
pose_list.append(pose_image_np)
|
176 |
|
@@ -200,11 +192,6 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
200 |
fps=fps,
|
201 |
)
|
202 |
|
203 |
-
# save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio"
|
204 |
-
# save_pil_imgs(video, save_path)
|
205 |
-
|
206 |
-
# save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(fps))
|
207 |
-
|
208 |
stream = ffmpeg.input(save_path)
|
209 |
audio = ffmpeg.input(input_audio)
|
210 |
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
@@ -212,149 +199,6 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
212 |
|
213 |
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|
214 |
|
215 |
-
@spaces.GPU
|
216 |
-
def video2video(ref_img, source_video, size=512, steps=25, length=60, seed=42):
|
217 |
-
cfg = 3.5
|
218 |
-
fi_step = 3
|
219 |
-
|
220 |
-
generator = torch.manual_seed(seed)
|
221 |
-
|
222 |
-
lmk_extractor = LMKExtractor()
|
223 |
-
vis = FaceMeshVisualizer()
|
224 |
-
|
225 |
-
width, height = size, size
|
226 |
-
|
227 |
-
date_str = datetime.now().strftime("%Y%m%d")
|
228 |
-
time_str = datetime.now().strftime("%H%M")
|
229 |
-
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
|
230 |
-
|
231 |
-
save_dir = Path(f"v2v_output/{date_str}/{save_dir_name}")
|
232 |
-
while os.path.exists(save_dir):
|
233 |
-
save_dir = Path(f"v2v_output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}")
|
234 |
-
save_dir.mkdir(exist_ok=True, parents=True)
|
235 |
-
|
236 |
-
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
237 |
-
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
238 |
-
if ref_image_np is None:
|
239 |
-
return None, Image.fromarray(ref_img)
|
240 |
-
|
241 |
-
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
242 |
-
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
243 |
-
|
244 |
-
face_result = lmk_extractor(ref_image_np)
|
245 |
-
if face_result is None:
|
246 |
-
return None, ref_image_pil
|
247 |
-
|
248 |
-
lmks = face_result['lmks'].astype(np.float32)
|
249 |
-
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
250 |
-
|
251 |
-
source_images = read_frames(source_video)
|
252 |
-
src_fps = get_fps(source_video)
|
253 |
-
pose_transform = transforms.Compose(
|
254 |
-
[transforms.Resize((height, width)), transforms.ToTensor()]
|
255 |
-
)
|
256 |
-
|
257 |
-
step = 1
|
258 |
-
if src_fps == 60:
|
259 |
-
src_fps = 30
|
260 |
-
step = 2
|
261 |
-
|
262 |
-
pose_trans_list = []
|
263 |
-
verts_list = []
|
264 |
-
bs_list = []
|
265 |
-
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
|
266 |
-
args_L = min(args_L, 90*step)
|
267 |
-
for src_image_pil in source_images[: args_L : step*fi_step]:
|
268 |
-
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
|
269 |
-
frame_height, frame_width, _ = src_img_np.shape
|
270 |
-
src_img_result = lmk_extractor(src_img_np)
|
271 |
-
if src_img_result is None:
|
272 |
-
break
|
273 |
-
pose_trans_list.append(src_img_result['trans_mat'])
|
274 |
-
verts_list.append(src_img_result['lmks3d'])
|
275 |
-
bs_list.append(src_img_result['bs'])
|
276 |
-
|
277 |
-
trans_mat_arr = np.array(pose_trans_list)
|
278 |
-
verts_arr = np.array(verts_list)
|
279 |
-
bs_arr = np.array(bs_list)
|
280 |
-
min_bs_idx = np.argmin(bs_arr.sum(1))
|
281 |
-
|
282 |
-
# compute delta pose
|
283 |
-
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
|
284 |
-
|
285 |
-
for i in range(pose_arr.shape[0]):
|
286 |
-
euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
|
287 |
-
pose_arr[i, :3] = euler_angles
|
288 |
-
pose_arr[i, 3:6] = translation_vector
|
289 |
-
|
290 |
-
init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
|
291 |
-
pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)
|
292 |
-
|
293 |
-
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
|
294 |
-
pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]
|
295 |
-
pose_mat_smooth = np.array(pose_mat_smooth)
|
296 |
-
|
297 |
-
# face retarget
|
298 |
-
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
|
299 |
-
# project 3D mesh to 2D landmark
|
300 |
-
projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
|
301 |
-
|
302 |
-
pose_list = []
|
303 |
-
for i, verts in enumerate(projected_vertices):
|
304 |
-
lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
|
305 |
-
pose_image_np = cv2.resize(lmk_img, (width, height))
|
306 |
-
pose_list.append(pose_image_np)
|
307 |
-
|
308 |
-
pose_list = np.array(pose_list)
|
309 |
-
|
310 |
-
video_length = len(pose_list)
|
311 |
-
|
312 |
-
video = pipe(
|
313 |
-
ref_image_pil,
|
314 |
-
pose_list,
|
315 |
-
ref_pose,
|
316 |
-
width,
|
317 |
-
height,
|
318 |
-
video_length,
|
319 |
-
steps,
|
320 |
-
cfg,
|
321 |
-
generator=generator,
|
322 |
-
).videos
|
323 |
-
|
324 |
-
video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)
|
325 |
-
|
326 |
-
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
|
327 |
-
save_videos_grid(
|
328 |
-
video,
|
329 |
-
save_path,
|
330 |
-
n_rows=1,
|
331 |
-
fps=src_fps,
|
332 |
-
)
|
333 |
-
|
334 |
-
# save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio"
|
335 |
-
# save_pil_imgs(video, save_path)
|
336 |
-
|
337 |
-
# save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(src_fps))
|
338 |
-
|
339 |
-
audio_output = f'{save_dir}/audio_from_video.aac'
|
340 |
-
# extract audio
|
341 |
-
try:
|
342 |
-
ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
|
343 |
-
# merge audio and video
|
344 |
-
stream = ffmpeg.input(save_path)
|
345 |
-
audio = ffmpeg.input(audio_output)
|
346 |
-
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
347 |
-
|
348 |
-
os.remove(save_path)
|
349 |
-
os.remove(audio_output)
|
350 |
-
except:
|
351 |
-
shutil.move(
|
352 |
-
save_path,
|
353 |
-
save_path.replace('_noaudio.mp4', '.mp4')
|
354 |
-
)
|
355 |
-
|
356 |
-
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|
357 |
-
|
358 |
|
359 |
################# GUI ################
|
360 |
|
@@ -405,32 +249,23 @@ with gr.Blocks() as demo:
|
|
405 |
)
|
406 |
|
407 |
|
408 |
-
with gr.Tab("
|
409 |
with gr.Row():
|
410 |
with gr.Column():
|
411 |
with gr.Row():
|
412 |
-
|
413 |
-
|
414 |
|
415 |
with gr.Row():
|
416 |
-
|
417 |
-
|
418 |
|
419 |
with gr.Row():
|
420 |
-
|
421 |
-
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
gr.Examples(
|
427 |
-
examples=[
|
428 |
-
["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"],
|
429 |
-
["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"],
|
430 |
-
["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
|
431 |
-
],
|
432 |
-
inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video],
|
433 |
-
)
|
434 |
|
435 |
a2v_botton.click(
|
436 |
fn=audio2video,
|
@@ -438,11 +273,11 @@ with gr.Blocks() as demo:
|
|
438 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
439 |
outputs=[a2v_output_video, a2v_ref_img]
|
440 |
)
|
441 |
-
|
442 |
-
fn=
|
443 |
-
inputs=[
|
444 |
-
|
445 |
-
outputs=[
|
446 |
)
|
447 |
|
448 |
demo.launch()
|
|
|
31 |
from src.audio2vid import get_headpose_temp, smooth_pose_seq
|
32 |
from src.utils.frame_interpolation import init_frame_interpolation_model, batch_images_interpolation_tool
|
33 |
|
|
|
34 |
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
35 |
if config.weight_dtype == "fp16":
|
36 |
weight_dtype = torch.float16
|
|
|
98 |
frame_inter_model = init_frame_interpolation_model()
|
99 |
|
100 |
@spaces.GPU
|
101 |
+
def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=60, seed=42):
|
102 |
fps = 30
|
103 |
cfg = 3.5
|
104 |
fi_step = 3
|
|
|
160 |
pose_images.append(lmk_img)
|
161 |
|
162 |
pose_list = []
|
|
|
|
|
|
|
|
|
|
|
163 |
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
|
164 |
args_L = min(args_L, 90)
|
165 |
for pose_image_np in pose_images[: args_L : fi_step]:
|
|
|
|
|
166 |
pose_image_np = cv2.resize(pose_image_np, (width, height))
|
167 |
pose_list.append(pose_image_np)
|
168 |
|
|
|
192 |
fps=fps,
|
193 |
)
|
194 |
|
|
|
|
|
|
|
|
|
|
|
195 |
stream = ffmpeg.input(save_path)
|
196 |
audio = ffmpeg.input(input_audio)
|
197 |
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
|
|
199 |
|
200 |
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
################# GUI ################
|
204 |
|
|
|
249 |
)
|
250 |
|
251 |
|
252 |
+
with gr.Tab("TTS"):
|
253 |
with gr.Row():
|
254 |
with gr.Column():
|
255 |
with gr.Row():
|
256 |
+
tts_text_input = gr.Textbox(lines=5, label="Input text", placeholder="Enter text to synthesize...")
|
257 |
+
tts_ref_img = gr.Image(label="Upload reference image", sources="upload")
|
258 |
|
259 |
with gr.Row():
|
260 |
+
tts_size_slider = gr.Slider(minimum=256, maximum=512, step=8, value=384, label="Video size (-W & -H)")
|
261 |
+
tts_step_slider = gr.Slider(minimum=5, maximum=20, step=1, value=15, label="Steps (--steps)")
|
262 |
|
263 |
with gr.Row():
|
264 |
+
tts_length = gr.Slider(minimum=0, maximum=90, step=1, value=30, label="Length (-L)")
|
265 |
+
tts_seed = gr.Number(value=42, label="Seed (--seed)")
|
266 |
|
267 |
+
tts_button = gr.Button("Generate", variant="primary")
|
268 |
+
tts_output_video = gr.PlayableVideo(label="Result", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
a2v_botton.click(
|
271 |
fn=audio2video,
|
|
|
273 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
274 |
outputs=[a2v_output_video, a2v_ref_img]
|
275 |
)
|
276 |
+
tts_button.click(
|
277 |
+
fn=audio2video, # ์ถํ TTS ๊ด๋ จ ํจ์๋ก ๋์ฒด ํ์
|
278 |
+
inputs=[tts_text_input, tts_ref_img, None,
|
279 |
+
tts_size_slider, tts_step_slider, tts_length, tts_seed],
|
280 |
+
outputs=[tts_output_video, tts_ref_img]
|
281 |
)
|
282 |
|
283 |
demo.launch()
|