Spaces:
Configuration error
Configuration error
Upload src/utils/mp_utils.py with huggingface_hub
Browse files- src/utils/mp_utils.py +95 -0
src/utils/mp_utils.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import time
|
5 |
+
from tqdm import tqdm
|
6 |
+
import multiprocessing
|
7 |
+
import glob
|
8 |
+
|
9 |
+
import mediapipe as mp
|
10 |
+
from mediapipe import solutions
|
11 |
+
from mediapipe.framework.formats import landmark_pb2
|
12 |
+
from mediapipe.tasks import python
|
13 |
+
from mediapipe.tasks.python import vision
|
14 |
+
from . import face_landmark
|
15 |
+
|
16 |
+
CUR_DIR = os.path.dirname(__file__)
|
17 |
+
|
18 |
+
|
19 |
+
class LMKExtractor():
|
20 |
+
def __init__(self, FPS=25):
|
21 |
+
# Create an FaceLandmarker object.
|
22 |
+
self.mode = mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE
|
23 |
+
base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/face_landmarker_v2_with_blendshapes.task'))
|
24 |
+
base_options.delegate = mp.tasks.BaseOptions.Delegate.CPU
|
25 |
+
options = vision.FaceLandmarkerOptions(base_options=base_options,
|
26 |
+
running_mode=self.mode,
|
27 |
+
output_face_blendshapes=True,
|
28 |
+
output_facial_transformation_matrixes=True,
|
29 |
+
num_faces=1)
|
30 |
+
self.detector = face_landmark.FaceLandmarker.create_from_options(options)
|
31 |
+
self.last_ts = 0
|
32 |
+
self.frame_ms = int(1000 / FPS)
|
33 |
+
|
34 |
+
det_base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/blaze_face_short_range.tflite'))
|
35 |
+
det_options = vision.FaceDetectorOptions(base_options=det_base_options)
|
36 |
+
self.det_detector = vision.FaceDetector.create_from_options(det_options)
|
37 |
+
|
38 |
+
|
39 |
+
def __call__(self, img):
|
40 |
+
frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
41 |
+
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
|
42 |
+
t0 = time.time()
|
43 |
+
if self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.VIDEO:
|
44 |
+
det_result = self.det_detector.detect(image)
|
45 |
+
if len(det_result.detections) != 1:
|
46 |
+
return None
|
47 |
+
self.last_ts += self.frame_ms
|
48 |
+
try:
|
49 |
+
detection_result, mesh3d = self.detector.detect_for_video(image, timestamp_ms=self.last_ts)
|
50 |
+
except:
|
51 |
+
return None
|
52 |
+
elif self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE:
|
53 |
+
# det_result = self.det_detector.detect(image)
|
54 |
+
|
55 |
+
# if len(det_result.detections) != 1:
|
56 |
+
# return None
|
57 |
+
try:
|
58 |
+
detection_result, mesh3d = self.detector.detect(image)
|
59 |
+
except:
|
60 |
+
return None
|
61 |
+
|
62 |
+
|
63 |
+
bs_list = detection_result.face_blendshapes
|
64 |
+
if len(bs_list) == 1:
|
65 |
+
bs = bs_list[0]
|
66 |
+
bs_values = []
|
67 |
+
for index in range(len(bs)):
|
68 |
+
bs_values.append(bs[index].score)
|
69 |
+
bs_values = bs_values[1:] # remove neutral
|
70 |
+
trans_mat = detection_result.facial_transformation_matrixes[0]
|
71 |
+
face_landmarks_list = detection_result.face_landmarks
|
72 |
+
face_landmarks = face_landmarks_list[0]
|
73 |
+
lmks = []
|
74 |
+
for index in range(len(face_landmarks)):
|
75 |
+
x = face_landmarks[index].x
|
76 |
+
y = face_landmarks[index].y
|
77 |
+
z = face_landmarks[index].z
|
78 |
+
lmks.append([x, y, z])
|
79 |
+
lmks = np.array(lmks)
|
80 |
+
|
81 |
+
lmks3d = np.array(mesh3d.vertex_buffer)
|
82 |
+
lmks3d = lmks3d.reshape(-1, 5)[:, :3]
|
83 |
+
mp_tris = np.array(mesh3d.index_buffer).reshape(-1, 3) + 1
|
84 |
+
|
85 |
+
return {
|
86 |
+
"lmks": lmks,
|
87 |
+
'lmks3d': lmks3d,
|
88 |
+
"trans_mat": trans_mat,
|
89 |
+
'faces': mp_tris,
|
90 |
+
"bs": bs_values
|
91 |
+
}
|
92 |
+
else:
|
93 |
+
# print('multiple faces in the image: {}'.format(img_path))
|
94 |
+
return None
|
95 |
+
|