Spaces:
Configuration error
Configuration error
Upload src/utils/frame_interpolation.py with huggingface_hub
Browse files
src/utils/frame_interpolation.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/dajes/frame-interpolation-pytorch
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import bisect
|
7 |
+
import shutil
|
8 |
+
import pdb
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
def init_frame_interpolation_model():
|
12 |
+
print("Initializing frame interpolation model")
|
13 |
+
checkpoint_name = os.path.join("./pretrained_model/film_net_fp16.pt")
|
14 |
+
|
15 |
+
model = torch.jit.load(checkpoint_name, map_location='cpu')
|
16 |
+
model.eval()
|
17 |
+
model = model.half()
|
18 |
+
model = model.to(device="cuda")
|
19 |
+
return model
|
20 |
+
|
21 |
+
|
22 |
+
def batch_images_interpolation_tool(input_tensor, model, inter_frames=1):
|
23 |
+
|
24 |
+
video_tensor = []
|
25 |
+
frame_num = input_tensor.shape[2] # bs, channel, frame, height, width
|
26 |
+
|
27 |
+
for idx in tqdm(range(frame_num-1)):
|
28 |
+
image1 = input_tensor[:,:,idx]
|
29 |
+
image2 = input_tensor[:,:,idx+1]
|
30 |
+
|
31 |
+
results = [image1, image2]
|
32 |
+
|
33 |
+
inter_frames = int(inter_frames)
|
34 |
+
idxes = [0, inter_frames + 1]
|
35 |
+
remains = list(range(1, inter_frames + 1))
|
36 |
+
|
37 |
+
splits = torch.linspace(0, 1, inter_frames + 2)
|
38 |
+
|
39 |
+
for _ in range(len(remains)):
|
40 |
+
starts = splits[idxes[:-1]]
|
41 |
+
ends = splits[idxes[1:]]
|
42 |
+
distances = ((splits[None, remains] - starts[:, None]) / (ends[:, None] - starts[:, None]) - .5).abs()
|
43 |
+
matrix = torch.argmin(distances).item()
|
44 |
+
start_i, step = np.unravel_index(matrix, distances.shape)
|
45 |
+
end_i = start_i + 1
|
46 |
+
|
47 |
+
x0 = results[start_i]
|
48 |
+
x1 = results[end_i]
|
49 |
+
|
50 |
+
x0 = x0.half()
|
51 |
+
x1 = x1.half()
|
52 |
+
x0 = x0.cuda()
|
53 |
+
x1 = x1.cuda()
|
54 |
+
|
55 |
+
dt = x0.new_full((1, 1), (splits[remains[step]] - splits[idxes[start_i]])) / (splits[idxes[end_i]] - splits[idxes[start_i]])
|
56 |
+
|
57 |
+
with torch.no_grad():
|
58 |
+
prediction = model(x0, x1, dt)
|
59 |
+
insert_position = bisect.bisect_left(idxes, remains[step])
|
60 |
+
idxes.insert(insert_position, remains[step])
|
61 |
+
results.insert(insert_position, prediction.clamp(0, 1).cpu().float())
|
62 |
+
del remains[step]
|
63 |
+
|
64 |
+
for sub_idx in range(len(results)-1):
|
65 |
+
video_tensor.append(results[sub_idx].unsqueeze(2))
|
66 |
+
|
67 |
+
video_tensor.append(input_tensor[:,:,-1].unsqueeze(2))
|
68 |
+
video_tensor = torch.cat(video_tensor, dim=2)
|
69 |
+
return video_tensor
|