Spaces:
Runtime error
Runtime error
khulnasoft
commited on
Create models_server.py
Browse files- models_server.py +258 -0
models_server.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
start = time.time()
|
2 |
+
|
3 |
+
pipe = pipes[model_id]["model"]
|
4 |
+
|
5 |
+
if "device" in pipes[model_id]:
|
6 |
+
try:
|
7 |
+
pipe.to(pipes[model_id]["device"])
|
8 |
+
except:
|
9 |
+
pipe.device = torch.device(pipes[model_id]["device"])
|
10 |
+
pipe.model.to(pipes[model_id]["device"])
|
11 |
+
|
12 |
+
result = None
|
13 |
+
try:
|
14 |
+
# text to video
|
15 |
+
if model_id == "damo-vilab/text-to-video-ms-1.7b":
|
16 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
17 |
+
# pipe.enable_model_cpu_offload()
|
18 |
+
prompt = data["text"]
|
19 |
+
video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames
|
20 |
+
file_name = str(uuid.uuid4())[:4]
|
21 |
+
video_path = export_to_video(video_frames, f"public/videos/{file_name}.mp4")
|
22 |
+
|
23 |
+
new_file_name = str(uuid.uuid4())[:4]
|
24 |
+
os.system(f"ffmpeg -i {video_path} -vcodec libx264 public/videos/{new_file_name}.mp4")
|
25 |
+
|
26 |
+
if os.path.exists(f"public/videos/{new_file_name}.mp4"):
|
27 |
+
result = {"path": f"/videos/{new_file_name}.mp4"}
|
28 |
+
else:
|
29 |
+
result = {"path": f"/videos/{file_name}.mp4"}
|
30 |
+
|
31 |
+
# controlnet
|
32 |
+
if model_id.startswith("lllyasviel/sd-controlnet-"):
|
33 |
+
pipe.controlnet.to('cpu')
|
34 |
+
pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"])
|
35 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
36 |
+
control_image = load_image(data["img_url"])
|
37 |
+
# generator = torch.manual_seed(66)
|
38 |
+
out_image: Image = pipe(data["text"], num_inference_steps=20, image=control_image).images[0]
|
39 |
+
file_name = str(uuid.uuid4())[:4]
|
40 |
+
out_image.save(f"public/images/{file_name}.png")
|
41 |
+
result = {"path": f"/images/{file_name}.png"}
|
42 |
+
|
43 |
+
if model_id.endswith("-control"):
|
44 |
+
image = load_image(data["img_url"])
|
45 |
+
if "scribble" in model_id:
|
46 |
+
control = pipe(image, scribble = True)
|
47 |
+
elif "canny" in model_id:
|
48 |
+
control = pipe(image, low_threshold=100, high_threshold=200)
|
49 |
+
else:
|
50 |
+
control = pipe(image)
|
51 |
+
file_name = str(uuid.uuid4())[:4]
|
52 |
+
control.save(f"public/images/{file_name}.png")
|
53 |
+
result = {"path": f"/images/{file_name}.png"}
|
54 |
+
|
55 |
+
# image to image
|
56 |
+
if model_id == "lambdalabs/sd-image-variations-diffusers":
|
57 |
+
im = load_image(data["img_url"])
|
58 |
+
file_name = str(uuid.uuid4())[:4]
|
59 |
+
with open(f"public/images/{file_name}.png", "wb") as f:
|
60 |
+
f.write(data)
|
61 |
+
tform = transforms.Compose([
|
62 |
+
transforms.ToTensor(),
|
63 |
+
transforms.Resize(
|
64 |
+
(224, 224),
|
65 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
66 |
+
antialias=False,
|
67 |
+
),
|
68 |
+
transforms.Normalize(
|
69 |
+
[0.48145466, 0.4578275, 0.40821073],
|
70 |
+
[0.26862954, 0.26130258, 0.27577711]),
|
71 |
+
])
|
72 |
+
inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0)
|
73 |
+
out = pipe(inp, guidance_scale=3)
|
74 |
+
out["images"][0].save(f"public/images/{file_name}.jpg")
|
75 |
+
result = {"path": f"/images/{file_name}.jpg"}
|
76 |
+
|
77 |
+
# image to text
|
78 |
+
if model_id == "Salesforce/blip-image-captioning-large":
|
79 |
+
raw_image = load_image(data["img_url"]).convert('RGB')
|
80 |
+
text = data["text"]
|
81 |
+
inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"])
|
82 |
+
out = pipe.generate(**inputs)
|
83 |
+
caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True)
|
84 |
+
result = {"generated text": caption}
|
85 |
+
if model_id == "ydshieh/vit-gpt2-coco-en":
|
86 |
+
img_url = data["img_url"]
|
87 |
+
generated_text = pipe(img_url)[0]['generated_text']
|
88 |
+
result = {"generated text": generated_text}
|
89 |
+
if model_id == "nlpconnect/vit-gpt2-image-captioning":
|
90 |
+
image = load_image(data["img_url"]).convert("RGB")
|
91 |
+
pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values
|
92 |
+
pixel_values = pixel_values.to(pipes[model_id]["device"])
|
93 |
+
generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1})
|
94 |
+
generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
95 |
+
result = {"generated text": generated_text}
|
96 |
+
# image to text: OCR
|
97 |
+
if model_id == "microsoft/trocr-base-printed" or model_id == "microsoft/trocr-base-handwritten":
|
98 |
+
image = load_image(data["img_url"]).convert("RGB")
|
99 |
+
pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values
|
100 |
+
pixel_values = pixel_values.to(pipes[model_id]["device"])
|
101 |
+
generated_ids = pipe.generate(pixel_values)
|
102 |
+
generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
103 |
+
result = {"generated text": generated_text}
|
104 |
+
|
105 |
+
# text to image
|
106 |
+
if model_id == "runwayml/stable-diffusion-v1-5":
|
107 |
+
file_name = str(uuid.uuid4())[:4]
|
108 |
+
text = data["text"]
|
109 |
+
out = pipe(prompt=text)
|
110 |
+
out["images"][0].save(f"public/images/{file_name}.jpg")
|
111 |
+
result = {"path": f"/images/{file_name}.jpg"}
|
112 |
+
|
113 |
+
# object detection
|
114 |
+
if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101":
|
115 |
+
img_url = data["img_url"]
|
116 |
+
open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"]
|
117 |
+
result = pipe(img_url, candidate_labels=open_types)
|
118 |
+
|
119 |
+
# VQA
|
120 |
+
if model_id == "dandelin/vilt-b32-finetuned-vqa":
|
121 |
+
question = data["text"]
|
122 |
+
img_url = data["img_url"]
|
123 |
+
result = pipe(question=question, image=img_url)
|
124 |
+
|
125 |
+
#DQA
|
126 |
+
if model_id == "impira/layoutlm-document-qa":
|
127 |
+
question = data["text"]
|
128 |
+
img_url = data["img_url"]
|
129 |
+
result = pipe(img_url, question)
|
130 |
+
|
131 |
+
# depth-estimation
|
132 |
+
if model_id == "Intel/dpt-large":
|
133 |
+
output = pipe(data["img_url"])
|
134 |
+
image = output['depth']
|
135 |
+
name = str(uuid.uuid4())[:4]
|
136 |
+
image.save(f"public/images/{name}.jpg")
|
137 |
+
result = {"path": f"/images/{name}.jpg"}
|
138 |
+
|
139 |
+
if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large":
|
140 |
+
image = load_image(data["img_url"])
|
141 |
+
inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt")
|
142 |
+
with torch.no_grad():
|
143 |
+
outputs = pipe(**inputs)
|
144 |
+
predicted_depth = outputs.predicted_depth
|
145 |
+
prediction = torch.nn.functional.interpolate(
|
146 |
+
predicted_depth.unsqueeze(1),
|
147 |
+
size=image.size[::-1],
|
148 |
+
mode="bicubic",
|
149 |
+
align_corners=False,
|
150 |
+
)
|
151 |
+
output = prediction.squeeze().cpu().numpy()
|
152 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
153 |
+
image = Image.fromarray(formatted)
|
154 |
+
name = str(uuid.uuid4())[:4]
|
155 |
+
image.save(f"public/images/{name}.jpg")
|
156 |
+
result = {"path": f"/images/{name}.jpg"}
|
157 |
+
|
158 |
+
# TTS
|
159 |
+
if model_id == "espnet/kan-bayashi_ljspeech_vits":
|
160 |
+
text = data["text"]
|
161 |
+
wav = pipe(text)["wav"]
|
162 |
+
name = str(uuid.uuid4())[:4]
|
163 |
+
sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16")
|
164 |
+
result = {"path": f"/audios/{name}.wav"}
|
165 |
+
|
166 |
+
if model_id == "microsoft/speecht5_tts":
|
167 |
+
text = data["text"]
|
168 |
+
inputs = pipes[model_id]["processor"](text=text, return_tensors="pt")
|
169 |
+
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
|
170 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"])
|
171 |
+
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
|
172 |
+
speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
|
173 |
+
name = str(uuid.uuid4())[:4]
|
174 |
+
sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
|
175 |
+
result = {"path": f"/audios/{name}.wav"}
|
176 |
+
|
177 |
+
# ASR
|
178 |
+
if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr":
|
179 |
+
audio_url = data["audio_url"]
|
180 |
+
result = { "text": pipe(audio_url)["text"]}
|
181 |
+
|
182 |
+
# audio to audio
|
183 |
+
if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k":
|
184 |
+
audio_url = data["audio_url"]
|
185 |
+
wav, sr = torchaudio.load(audio_url)
|
186 |
+
with torch.no_grad():
|
187 |
+
result_wav = pipe(wav.to(pipes[model_id]["device"]))
|
188 |
+
name = str(uuid.uuid4())[:4]
|
189 |
+
sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr)
|
190 |
+
result = {"path": f"/audios/{name}.wav"}
|
191 |
+
|
192 |
+
if model_id == "microsoft/speecht5_vc":
|
193 |
+
audio_url = data["audio_url"]
|
194 |
+
wav, sr = torchaudio.load(audio_url)
|
195 |
+
inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt")
|
196 |
+
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
|
197 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
198 |
+
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
|
199 |
+
speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
|
200 |
+
name = str(uuid.uuid4())[:4]
|
201 |
+
sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
|
202 |
+
result = {"path": f"/audios/{name}.wav"}
|
203 |
+
|
204 |
+
# segmentation
|
205 |
+
if model_id == "facebook/detr-resnet-50-panoptic":
|
206 |
+
result = []
|
207 |
+
segments = pipe(data["img_url"])
|
208 |
+
image = load_image(data["img_url"])
|
209 |
+
|
210 |
+
colors = []
|
211 |
+
for i in range(len(segments)):
|
212 |
+
colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50))
|
213 |
+
|
214 |
+
for segment in segments:
|
215 |
+
mask = segment["mask"]
|
216 |
+
mask = mask.convert('L')
|
217 |
+
layer = Image.new('RGBA', mask.size, colors[i])
|
218 |
+
image.paste(layer, (0, 0), mask)
|
219 |
+
name = str(uuid.uuid4())[:4]
|
220 |
+
image.save(f"public/images/{name}.jpg")
|
221 |
+
result = {"path": f"/images/{name}.jpg"}
|
222 |
+
|
223 |
+
if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade":
|
224 |
+
image = load_image(data["img_url"])
|
225 |
+
inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"])
|
226 |
+
outputs = pipe(**inputs)
|
227 |
+
result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
228 |
+
predicted_panoptic_map = result["segmentation"].cpu().numpy()
|
229 |
+
predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8))
|
230 |
+
name = str(uuid.uuid4())[:4]
|
231 |
+
predicted_panoptic_map.save(f"public/images/{name}.jpg")
|
232 |
+
result = {"path": f"/images/{name}.jpg"}
|
233 |
+
|
234 |
+
except Exception as e:
|
235 |
+
print(e)
|
236 |
+
traceback.print_exc()
|
237 |
+
result = {"error": {"message": "Error when running the model inference."}}
|
238 |
+
|
239 |
+
if "device" in pipes[model_id]:
|
240 |
+
try:
|
241 |
+
pipe.to("cpu")
|
242 |
+
torch.cuda.empty_cache()
|
243 |
+
except:
|
244 |
+
pipe.device = torch.device("cpu")
|
245 |
+
pipe.model.to("cpu")
|
246 |
+
torch.cuda.empty_cache()
|
247 |
+
|
248 |
+
pipes[model_id]["using"] = False
|
249 |
+
|
250 |
+
if result is None:
|
251 |
+
result = {"error": {"message": "model not found"}}
|
252 |
+
|
253 |
+
end = time.time()
|
254 |
+
during = end - start
|
255 |
+
print(f"[ complete {model_id} ] {during}s")
|
256 |
+
print(f"[ result {model_id} ] {result}")
|
257 |
+
|
258 |
+
return result
|