Spaces:
Sleeping
Sleeping
Rename 02JUL24app.py to app.py
Browse files- 02JUL24app.py → app.py +31 -35
02JUL24app.py → app.py
RENAMED
@@ -1,66 +1,62 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
3 |
import chromadb
|
4 |
import pandas as pd
|
5 |
import os
|
|
|
6 |
import json
|
7 |
from pathlib import Path
|
8 |
from llama_index.llms.anyscale import Anyscale
|
9 |
|
10 |
-
#
|
11 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
12 |
|
13 |
-
#
|
14 |
chroma_client = chromadb.Client()
|
15 |
|
16 |
-
# Function to
|
17 |
-
def reencode_embeddings(embeddings):
|
18 |
-
return [model.encode(eval(embedding.replace(',,', ','))).tolist() for embedding in embeddings]
|
19 |
-
|
20 |
-
# Function to build the vector database from a CSV file
|
21 |
def build_database():
|
22 |
-
# Read the CSV file containing document data
|
23 |
df = pd.read_csv('vector_store.csv')
|
24 |
-
|
25 |
-
# Name of the collection to store the data
|
26 |
collection_name = 'Dataset-10k-companies'
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
# Create a new collection in ChromaDB
|
32 |
collection = chroma_client.create_collection(name=collection_name)
|
33 |
-
|
34 |
-
# Re-encode the embeddings to match the model's dimensionality
|
35 |
-
embeddings = reencode_embeddings(df['embeddings'].tolist())
|
36 |
|
37 |
-
# Add data from the DataFrame
|
38 |
collection.add(
|
39 |
documents=df['documents'].tolist(),
|
40 |
ids=df['ids'].tolist(),
|
41 |
metadatas=df['metadatas'].apply(eval).tolist(),
|
42 |
-
embeddings=embeddings
|
43 |
)
|
44 |
-
|
45 |
return collection
|
46 |
|
47 |
-
# Build the database
|
48 |
collection = build_database()
|
49 |
|
50 |
-
#
|
51 |
anyscale_api_key = os.environ.get('anyscale_api_key')
|
52 |
|
53 |
-
#
|
54 |
client = Anyscale(api_key=anyscale_api_key, model="meta-llama/Llama-2-70b-chat-hf")
|
55 |
|
56 |
# Function to get relevant chunks from the database based on the query
|
57 |
def get_relevant_chunks(query, collection, top_n=3):
|
58 |
# Encode the query into an embedding
|
59 |
query_embedding = model.encode(query).tolist()
|
60 |
-
|
61 |
# Query the collection to get the top_n most relevant results
|
62 |
results = collection.query(query_embeddings=[query_embedding], n_results=top_n)
|
63 |
-
|
64 |
relevant_chunks = []
|
65 |
# Extract relevant chunks and their metadata
|
66 |
for i in range(len(results['documents'][0])):
|
@@ -68,7 +64,7 @@ def get_relevant_chunks(query, collection, top_n=3):
|
|
68 |
source = results['metadatas'][0][i]['source']
|
69 |
page = results['metadatas'][0][i]['page']
|
70 |
relevant_chunks.append((chunk, source, page))
|
71 |
-
|
72 |
return relevant_chunks
|
73 |
|
74 |
# System message template for the LLM to provide structured responses
|
@@ -128,10 +124,10 @@ def predict(company, user_query):
|
|
128 |
try:
|
129 |
# Modify the query to include the company name
|
130 |
modified_query = f"{user_query} for {company}"
|
131 |
-
|
132 |
# Get relevant chunks from the database
|
133 |
relevant_chunks = get_relevant_chunks(modified_query, collection)
|
134 |
-
|
135 |
# Prepare the context string from the relevant chunks
|
136 |
context = ""
|
137 |
for chunk, source, page in relevant_chunks:
|
@@ -149,7 +145,7 @@ def predict(company, user_query):
|
|
149 |
|
150 |
# Log the interaction for future reference
|
151 |
log_interaction(company, user_query, context, answer)
|
152 |
-
|
153 |
return answer
|
154 |
except Exception as e:
|
155 |
return f"An error occurred: {str(e)}"
|
@@ -167,8 +163,8 @@ def log_interaction(company, user_query, context, answer):
|
|
167 |
f.write("\n")
|
168 |
|
169 |
# Create Gradio interface for user interaction
|
170 |
-
company_list = ["
|
171 |
-
|
172 |
fn=predict,
|
173 |
inputs=[
|
174 |
gr.Radio(company_list, label="Select Company"),
|
@@ -179,5 +175,5 @@ iface = gr.Interface(
|
|
179 |
description="Query the vector database and get an LLM response based on the documents in the collection."
|
180 |
)
|
181 |
|
182 |
-
# Launch the Gradio interface
|
183 |
-
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
+
from langchain_community.embeddings.sentence_transformer import (
|
5 |
+
SentenceTransformerEmbeddings
|
6 |
+
)
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
import chromadb
|
9 |
import pandas as pd
|
10 |
import os
|
11 |
+
import csv
|
12 |
import json
|
13 |
from pathlib import Path
|
14 |
from llama_index.llms.anyscale import Anyscale
|
15 |
|
16 |
+
# Transformer model for embedding
|
17 |
+
#model = SentenceTransformer('all-MiniLM-L6-v2')
|
18 |
+
model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
19 |
|
20 |
+
# ChromaDB client for managing the vdb
|
21 |
chroma_client = chromadb.Client()
|
22 |
|
23 |
+
# Function to build the vdb from csv
|
|
|
|
|
|
|
|
|
24 |
def build_database():
|
|
|
25 |
df = pd.read_csv('vector_store.csv')
|
26 |
+
print(df.head())
|
|
|
27 |
collection_name = 'Dataset-10k-companies'
|
28 |
+
|
29 |
+
|
30 |
+
# Creating a new collection
|
|
|
|
|
31 |
collection = chroma_client.create_collection(name=collection_name)
|
|
|
|
|
|
|
32 |
|
33 |
+
# Add data from the created DataFrame
|
34 |
collection.add(
|
35 |
documents=df['documents'].tolist(),
|
36 |
ids=df['ids'].tolist(),
|
37 |
metadatas=df['metadatas'].apply(eval).tolist(),
|
38 |
+
embeddings=df['embeddings'].apply(lambda x: eval(x.replace(',,', ','))).tolist()
|
39 |
)
|
40 |
+
|
41 |
return collection
|
42 |
|
43 |
+
# Build the database
|
44 |
collection = build_database()
|
45 |
|
46 |
+
# Get API key from hf environment variables
|
47 |
anyscale_api_key = os.environ.get('anyscale_api_key')
|
48 |
|
49 |
+
# Anyscale client for using the Llama language model
|
50 |
client = Anyscale(api_key=anyscale_api_key, model="meta-llama/Llama-2-70b-chat-hf")
|
51 |
|
52 |
# Function to get relevant chunks from the database based on the query
|
53 |
def get_relevant_chunks(query, collection, top_n=3):
|
54 |
# Encode the query into an embedding
|
55 |
query_embedding = model.encode(query).tolist()
|
56 |
+
|
57 |
# Query the collection to get the top_n most relevant results
|
58 |
results = collection.query(query_embeddings=[query_embedding], n_results=top_n)
|
59 |
+
|
60 |
relevant_chunks = []
|
61 |
# Extract relevant chunks and their metadata
|
62 |
for i in range(len(results['documents'][0])):
|
|
|
64 |
source = results['metadatas'][0][i]['source']
|
65 |
page = results['metadatas'][0][i]['page']
|
66 |
relevant_chunks.append((chunk, source, page))
|
67 |
+
|
68 |
return relevant_chunks
|
69 |
|
70 |
# System message template for the LLM to provide structured responses
|
|
|
124 |
try:
|
125 |
# Modify the query to include the company name
|
126 |
modified_query = f"{user_query} for {company}"
|
127 |
+
|
128 |
# Get relevant chunks from the database
|
129 |
relevant_chunks = get_relevant_chunks(modified_query, collection)
|
130 |
+
|
131 |
# Prepare the context string from the relevant chunks
|
132 |
context = ""
|
133 |
for chunk, source, page in relevant_chunks:
|
|
|
145 |
|
146 |
# Log the interaction for future reference
|
147 |
log_interaction(company, user_query, context, answer)
|
148 |
+
|
149 |
return answer
|
150 |
except Exception as e:
|
151 |
return f"An error occurred: {str(e)}"
|
|
|
163 |
f.write("\n")
|
164 |
|
165 |
# Create Gradio interface for user interaction
|
166 |
+
company_list = ["Meta", "IBM", "MSFT", "Google", "AWS"]
|
167 |
+
interface = gr.Interface(
|
168 |
fn=predict,
|
169 |
inputs=[
|
170 |
gr.Radio(company_list, label="Select Company"),
|
|
|
175 |
description="Query the vector database and get an LLM response based on the documents in the collection."
|
176 |
)
|
177 |
|
178 |
+
# Launch the Gradio interface with public sharing enabled
|
179 |
+
interface.launch()
|