import joblib from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score import numpy as np import pandas as pd # Read data df = pd.read_csv("insurance.csv") # Create the y, X variables by splitting of the target continuous variable 'charges' # from the remaining features print("Creating data subsets") y = df['charges'] X = df.drop('charges', axis=1) print("Data subsets created") # Extract the names of the numerical and categorical columns numeric_features = X.select_dtypes(include=['int64', 'float64']).columns.tolist() categorical_features = X.select_dtypes(include=['object']).columns.tolist() target = 'charges' # Split the independent and dependent features into X and y variables with a test size of 20% and random state set to 42 Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) print("Preprocessing Data") preprocessor = make_column_transformer( (StandardScaler(), numeric_features), (OneHotEncoder(handle_unknown='ignore'), categorical_features) ) model_linear_regression = LinearRegression(n_jobs=-1) print("Estimating Model Pipeline") model_pipeline = make_pipeline( preprocessor, model_linear_regression ) model_pipeline.fit(Xtrain, ytrain) print("Logging Metrics") print(f"R-squared: {r2_score(ytest, model_pipeline.predict(Xtest))}") print("Serializing Model") saved_model_path = "model.joblib" joblib.dump(model_pipeline, saved_model_path)