# Kolors Kolors is a Chinese diffusion model, which is based on ChatGLM and Stable Diffusion XL. We provide training scripts here. ## Download models The following files will be used for constructing Kolors. You can download Kolors from [huggingface](https://huggingface.co/Kwai-Kolors/Kolors) or [modelscope](https://modelscope.cn/models/Kwai-Kolors/Kolors). Due to precision overflow issues, we need to download an additional VAE model (from [huggingface](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix) or [modelscope](https://modelscope.cn/models/AI-ModelScope/sdxl-vae-fp16-fix)). ``` models ├── kolors │ └── Kolors │ ├── text_encoder │ │ ├── config.json │ │ ├── pytorch_model-00001-of-00007.bin │ │ ├── pytorch_model-00002-of-00007.bin │ │ ├── pytorch_model-00003-of-00007.bin │ │ ├── pytorch_model-00004-of-00007.bin │ │ ├── pytorch_model-00005-of-00007.bin │ │ ├── pytorch_model-00006-of-00007.bin │ │ ├── pytorch_model-00007-of-00007.bin │ │ └── pytorch_model.bin.index.json │ ├── unet │ │ └── diffusion_pytorch_model.safetensors │ └── vae │ └── diffusion_pytorch_model.safetensors └── sdxl-vae-fp16-fix └── diffusion_pytorch_model.safetensors ``` You can use the following code to download these files: ```python from diffsynth import download_models download_models(["Kolors", "SDXL-vae-fp16-fix"]) ``` ## Train ### Install training dependency ``` pip install peft lightning pandas torchvision ``` ### Prepare your dataset We provide an example dataset [here](https://modelscope.cn/datasets/buptwq/lora-stable-diffusion-finetune/files). You need to manage the training images as follows: ``` data/dog/ └── train ├── 00.jpg ├── 01.jpg ├── 02.jpg ├── 03.jpg ├── 04.jpg └── metadata.csv ``` `metadata.csv`: ``` file_name,text 00.jpg,一只小狗 01.jpg,一只小狗 02.jpg,一只小狗 03.jpg,一只小狗 04.jpg,一只小狗 ``` ### Train a LoRA model We provide a training script `train_kolors_lora.py`. Before you run this training script, please copy it to the root directory of this project. The following settings are recommended. 22GB VRAM is required. ``` CUDA_VISIBLE_DEVICES="0" python examples/train/kolors/train_kolors_lora.py \ --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ --dataset_path data/dog \ --output_path ./models \ --max_epochs 10 \ --center_crop \ --use_gradient_checkpointing \ --precision "16-mixed" ``` Optional arguments: ``` -h, --help show this help message and exit --pretrained_unet_path PRETRAINED_UNET_PATH Path to pretrained model (UNet). For example, `models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors`. --pretrained_text_encoder_path PRETRAINED_TEXT_ENCODER_PATH Path to pretrained model (Text Encoder). For example, `models/kolors/Kolors/text_encoder`. --pretrained_fp16_vae_path PRETRAINED_FP16_VAE_PATH Path to pretrained model (VAE). For example, `models/kolors/Kolors/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors`. --dataset_path DATASET_PATH The path of the Dataset. --output_path OUTPUT_PATH Path to save the model. --steps_per_epoch STEPS_PER_EPOCH Number of steps per epoch. --height HEIGHT Image height. --width WIDTH Image width. --center_crop Whether to center crop the input images to the resolution. If not set, the images will be randomly cropped. The images will be resized to the resolution first before cropping. --random_flip Whether to randomly flip images horizontally --batch_size BATCH_SIZE Batch size (per device) for the training dataloader. --dataloader_num_workers DATALOADER_NUM_WORKERS Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. --precision {32,16,16-mixed} Training precision --learning_rate LEARNING_RATE Learning rate. --lora_rank LORA_RANK The dimension of the LoRA update matrices. --lora_alpha LORA_ALPHA The weight of the LoRA update matrices. --use_gradient_checkpointing Whether to use gradient checkpointing. --accumulate_grad_batches ACCUMULATE_GRAD_BATCHES The number of batches in gradient accumulation. --training_strategy {auto,deepspeed_stage_1,deepspeed_stage_2,deepspeed_stage_3} Training strategy --max_epochs MAX_EPOCHS Number of epochs. ``` ### Inference with your own LoRA model After training, you can use your own LoRA model to generate new images. Here are some examples. ```python from diffsynth import ModelManager, KolorsImagePipeline from peft import LoraConfig, inject_adapter_in_model import torch def load_lora(model, lora_rank, lora_alpha, lora_path): lora_config = LoraConfig( r=lora_rank, lora_alpha=lora_alpha, init_lora_weights="gaussian", target_modules=["to_q", "to_k", "to_v", "to_out"], ) model = inject_adapter_in_model(lora_config, model) state_dict = torch.load(lora_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) return model # Load models model_manager = ModelManager(torch_dtype=torch.float16, device="cuda", file_path_list=[ "models/kolors/Kolors/text_encoder", "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors" ]) pipe = KolorsImagePipeline.from_model_manager(model_manager) # Generate an image with lora pipe.unet = load_lora( pipe.unet, lora_rank=4, lora_alpha=4.0, # The two parameters should be consistent with those in your training script. lora_path="path/to/your/lora/model/lightning_logs/version_x/checkpoints/epoch=x-step=xxx.ckpt" ) torch.manual_seed(0) image = pipe( prompt="一只小狗蹦蹦跳跳,周围是姹紫嫣红的鲜花,远处是山脉", negative_prompt="", cfg_scale=4, num_inference_steps=50, height=1024, width=1024, ) image.save("image_with_lora.jpg") ``` Prompt: 一只小狗蹦蹦跳跳,周围是姹紫嫣红的鲜花,远处是山脉 |Without LoRA|With LoRA| |-|-| |![image_without_lora](https://github.com/modelscope/DiffSynth-Studio/assets/35051019/9d79ed7a-e8cf-4d98-800a-f182809db318)|![image_with_lora](https://github.com/modelscope/DiffSynth-Studio/assets/35051019/02f62323-6ee5-4788-97a1-549732dbe4f0)|