Spaces:
Runtime error
Runtime error
File size: 10,100 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from diffsynth import ModelManager, SD3ImagePipeline
from peft import LoraConfig, inject_adapter_in_model
from torchvision import transforms
from PIL import Image
import lightning as pl
import pandas as pd
import torch, os, argparse
os.environ["TOKENIZERS_PARALLELISM"] = "True"
class TextImageDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False):
self.steps_per_epoch = steps_per_epoch
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv"))
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]]
self.text = metadata["text"].to_list()
self.image_processor = transforms.Compose(
[
transforms.Resize(max(height, width), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __getitem__(self, index):
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
text = self.text[data_id]
image = Image.open(self.path[data_id]).convert("RGB")
image = self.image_processor(image)
return {"text": text, "image": image}
def __len__(self):
return self.steps_per_epoch
class LightningModel(pl.LightningModule):
def __init__(self, torch_dtype=torch.float16, learning_rate=1e-4, pretrained_weights=[], lora_rank=4, lora_alpha=4, use_gradient_checkpointing=True):
super().__init__()
# Load models
model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device)
model_manager.load_models(pretrained_weights)
self.pipe = SD3ImagePipeline.from_model_manager(model_manager)
# Freeze parameters
self.pipe.text_encoder_1.requires_grad_(False)
self.pipe.text_encoder_2.requires_grad_(False)
if self.pipe.text_encoder_3 is not None:
self.pipe.text_encoder_3.requires_grad_(False)
self.pipe.dit.requires_grad_(False)
self.pipe.vae_decoder.requires_grad_(False)
self.pipe.vae_encoder.requires_grad_(False)
self.pipe.text_encoder_1.eval()
self.pipe.text_encoder_2.eval()
if self.pipe.text_encoder_3 is not None:
self.pipe.text_encoder_3.eval()
self.pipe.dit.train()
self.pipe.vae_decoder.eval()
self.pipe.vae_encoder.eval()
# Add LoRA to DiT
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=["a_to_qkv", "b_to_qkv"],
)
self.pipe.dit = inject_adapter_in_model(lora_config, self.pipe.dit)
for param in self.pipe.dit.parameters():
# Upcast LoRA parameters into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# Set other parameters
self.learning_rate = learning_rate
self.use_gradient_checkpointing = use_gradient_checkpointing
self.pipe.scheduler.set_timesteps(1000)
def training_step(self, batch, batch_idx):
# Data
text, image = batch["text"], batch["image"]
# Prepare input parameters
self.pipe.device = self.device
prompt_emb, pooled_prompt_emb = self.pipe.prompter.encode_prompt(
self.pipe.text_encoder_1, self.pipe.text_encoder_2, self.pipe.text_encoder_3,
text, device=self.device
)
latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device))
noise = torch.randn_like(latents)
timestep_id = torch.randint(0, 1000, (1,))
timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device)
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, self.pipe.scheduler.timesteps[timestep_id])
training_target = self.pipe.scheduler.training_target(latents, noise, timestep)
# Compute loss
noise_pred = self.pipe.dit(noisy_latents, timestep, prompt_emb, pooled_prompt_emb, use_gradient_checkpointing=self.use_gradient_checkpointing)
loss = torch.nn.functional.mse_loss(noise_pred, training_target)
# Record log
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.dit.parameters())
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.dit.named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
state_dict = self.pipe.dit.state_dict()
for name, param in state_dict.items():
if name in trainable_param_names:
checkpoint[name] = param
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_path",
type=str,
default=None,
required=True,
help="Path to pretrained model. For example, `models/stable_diffusion_3/sd3_medium_incl_clips.safetensors` or `models/stable_diffusion_3/sd3_medium_incl_clips_t5xxlfp16.safetensors`.",
)
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--height",
type=int,
default=1024,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=1024,
help="Image width.",
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
default=False,
action="store_true",
help="Whether to randomly flip images horizontally",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--precision",
type=str,
default="16-mixed",
choices=["32", "16", "16-mixed"],
help="Training precision",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="The dimension of the LoRA update matrices.",
)
parser.add_argument(
"--lora_alpha",
type=float,
default=4.0,
help="The weight of the LoRA update matrices.",
)
parser.add_argument(
"--use_gradient_checkpointing",
default=False,
action="store_true",
help="Whether to use gradient checkpointing.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--training_strategy",
type=str,
default="auto",
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
help="Training strategy",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
args = parser.parse_args()
return args
if __name__ == '__main__':
# args
args = parse_args()
# dataset and data loader
dataset = TextImageDataset(
args.dataset_path,
steps_per_epoch=args.steps_per_epoch * args.batch_size,
height=args.height,
width=args.width,
center_crop=args.center_crop,
random_flip=args.random_flip
)
train_loader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers
)
# model
model = LightningModel(
pretrained_weights=[args.pretrained_path],
torch_dtype=torch.float32 if args.precision == "32" else torch.float16,
learning_rate=args.learning_rate,
lora_rank=args.lora_rank,
lora_alpha=args.lora_alpha,
use_gradient_checkpointing=args.use_gradient_checkpointing
)
# train
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
precision=args.precision,
strategy=args.training_strategy,
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
)
trainer.fit(model=model, train_dataloaders=train_loader)
|