import tensorflow as tf import huggingface_hub as hf_hub import gradio as gr num_rows = 3 num_cols = 3 num_images = num_rows * num_cols image_size = 64 plot_image_size = 64 def load_model(): model = hf_hub.from_pretrained_keras("beresandras/denoising-diffusion-model") return model def diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate): start_angle = tf.acos(max_signal_rate) end_angle = tf.acos(min_signal_rate) diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle) signal_rates = tf.cos(diffusion_angles) noise_rates = tf.sin(diffusion_angles) return noise_rates, signal_rates def generate_images(model, num_images, diffusion_steps, stochasticity, min_signal_rate, max_signal_rate): step_size = 1.0 / diffusion_steps initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3)) noisy_images = initial_noise for step in range(diffusion_steps): diffusion_times = tf.ones((num_images, 1, 1, 1)) - step * step_size next_diffusion_times = diffusion_times - step_size noise_rates, signal_rates = diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate) next_noise_rates, next_signal_rates = diffusion_schedule(next_diffusion_times, min_signal_rate, max_signal_rate) sample_noises = tf.random.normal(shape=(num_images, image_size, image_size, 3)) sample_noise_rates = stochasticity * (1.0 - (signal_rates / next_signal_rates)**2)**0.5 * (next_noise_rates / noise_rates) pred_noises = model([noisy_images, noise_rates]) pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates noisy_images = ( next_signal_rates * pred_images + (next_noise_rates**2 - sample_noise_rates**2)**0.5 * pred_noises + sample_noise_rates * sample_noises ) generated_images = tf.clip_by_value(0.5 + 0.3 * pred_images, 0.0, 1.0) generated_images = tf.image.resize( generated_images, (plot_image_size, plot_image_size), method="nearest" ) return generated_images.numpy() model = load_model() gr.Interface( generate_images, inputs=[ model, num_images, gr.inputs.Slider(1, 20, default=10, label="Diffusion steps"), gr.inputs.Slider(0.0, 1.0, step=0.05, default=0.0, label="Stochasticity"), gr.inputs.Slider(0.02, 0.10, step=0.01, default=0.02, label="Minimal signal rate"), gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"), ], outputs="image", ).launch()