import numpy as np import tensorflow as tf import gradio as gr from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("keras-io/conv_autoencoder") examples = [ ['./example_0.jpeg'], ['./example_1.jpeg'], ['./example_2.jpeg'], ['./example_3.jpeg'], ['./example_4.jpeg'] ] def infer(original_image): image = tf.keras.utils.img_to_array(original_image) image = image.astype("float32") / 255.0 image = np.reshape(image, (1, 28, 28, 1)) output = model.predict(image) output = np.reshape(output, (28, 28, 1)) output_image = tf.keras.preprocessing.image.array_to_img(output) return output_image iface = gr.Interface( fn = infer, title = "Image Denoising using Convolutional AutoEncoders", description = "Keras Implementation of a deep convolutional autoencoder for image denoising", inputs = gr.inputs.Image(image_mode='L', shape=(28, 28)), outputs = gr.outputs.Image(type = 'pil'), examples = examples, article = "Author: Vivek Rai. Based on the keras example from Santiago L. Valdarrama \n Model Link: https://huggingface.co/keras-io/conv_autoencoder", ).launch(enable_queue=True, debug = True)