import gradio as gr
from huggingface_hub import from_pretrained_keras
import tensorflow as tf
CLASSES = {
0: "airplane",
1: "automobile",
2: "bird",
3: "cat",
4: "deer",
5: "dog",
6: "frog",
7: "horse",
8: "ship",
9: "truck",
}
IMAGE_SIZE = 32
model = from_pretrained_keras("EdoAbati/cct")
def reshape_image(image):
image = tf.convert_to_tensor(image)
image.set_shape([None, None, 3])
image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])
image = tf.expand_dims(image, axis=0)
return image
def classify_image(input_image):
input_image = reshape_image(input_image)
logits = model.predict(input_image).flatten()
predictions = tf.nn.softmax(logits)
output_labels = {CLASSES[i]: float(predictions[i]) for i in CLASSES.keys()}
return output_labels
# Gradio Interface
examples = [["./bird.png"], ["./cat.png"], ["./dog.png"], ["./horse.png"]]
title = "Image Classification using Compact Convolutional Transformer (CCT)"
description = """
Upload an image or select one from the examples and ask the model to label it!
The model was trained on the CIFAR-10 dataset. Therefore, it is able to recognise these 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.
Model: https://huggingface.co/keras-io/cct
Keras Example: https://keras.io/examples/vision/cct/