Spaces:
Sleeping
Sleeping
Setup
Browse files- README.md +2 -2
- app.py +141 -0
- requirements.txt +0 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Ringkas Ulas
|
3 |
emoji: 🐢
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.47.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Ringkas Ulas
|
3 |
emoji: 🐢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.47.1
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
import unicodedata as uni
|
5 |
+
import emoji
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.document_loaders import DataFrameLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
SHOPEE_API_URL = """https://shopee.co.id/api/v2/item/get_ratings?filter=0&flag=1&itemid={item_id}&limit=20&offset={offset}&shopid={shop_id}&type=0"""
|
15 |
+
shop_id = ""
|
16 |
+
item_id = ""
|
17 |
+
item = {}
|
18 |
+
LIMIT = 1000 # Limit to 1000 reviews so that processing does not take too long
|
19 |
+
|
20 |
+
|
21 |
+
def get_product_id(URL):
|
22 |
+
# Get shop id and item id from input URL
|
23 |
+
r = re.search(r"i\.(\d+)\.(\d+)", URL)
|
24 |
+
shop_id, item_id = r[1], r[2]
|
25 |
+
return shop_id, item_id
|
26 |
+
|
27 |
+
|
28 |
+
def scrape(URL):
|
29 |
+
try:
|
30 |
+
shop_id, item_id = get_product_id(URL)
|
31 |
+
except:
|
32 |
+
return None
|
33 |
+
|
34 |
+
offset = 0
|
35 |
+
reviews = []
|
36 |
+
while True:
|
37 |
+
# Get JSON data using shop_id and item_id from input URL
|
38 |
+
data = requests.get(
|
39 |
+
SHOPEE_API_URL.format(shop_id=shop_id, item_id=item_id, offset=offset)
|
40 |
+
).json()
|
41 |
+
|
42 |
+
i = 1
|
43 |
+
for i, review in enumerate(data["data"]["ratings"], 1):
|
44 |
+
reviews.append(review["comment"])
|
45 |
+
|
46 |
+
if i % 20:
|
47 |
+
break
|
48 |
+
|
49 |
+
offset += 20
|
50 |
+
if offset >= LIMIT:
|
51 |
+
break
|
52 |
+
|
53 |
+
df = pd.DataFrame(reviews, columns=["comment"])
|
54 |
+
|
55 |
+
return df
|
56 |
+
|
57 |
+
|
58 |
+
# Clean
|
59 |
+
def clean(df):
|
60 |
+
df = df.dropna().copy().reset_index(drop=True) # drop reviews with empty comments
|
61 |
+
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews
|
62 |
+
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # clean text
|
63 |
+
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews
|
64 |
+
return df
|
65 |
+
|
66 |
+
|
67 |
+
def clean_text(text):
|
68 |
+
text = uni.normalize("NFKD", text) # normalise characters
|
69 |
+
text = emoji.replace_emoji(text, "") # remove emoji
|
70 |
+
text = re.sub(r"(\w)\1{2,}", r"\1", text) # repeated chars
|
71 |
+
text = re.sub(r"[ ]+", " ", text).strip() # remove extra spaces
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
# LLM
|
76 |
+
OpenAIModel = "gpt-3.5-turbo"
|
77 |
+
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
|
78 |
+
|
79 |
+
# Embeddings
|
80 |
+
embeddings = HuggingFaceEmbeddings(model_name="Blaxzter/LaBSE-sentence-embeddings")
|
81 |
+
|
82 |
+
cache_URL = ""
|
83 |
+
db = None
|
84 |
+
qa = None
|
85 |
+
|
86 |
+
|
87 |
+
def generate(URL, query):
|
88 |
+
global cache_URL, db, qa
|
89 |
+
if URL != cache_URL:
|
90 |
+
# Get reviews
|
91 |
+
try:
|
92 |
+
reviews = scrape(URL)
|
93 |
+
# Clean reviews
|
94 |
+
cleaned_reviews = clean(reviews)
|
95 |
+
# Load data
|
96 |
+
loader = DataFrameLoader(cleaned_reviews, page_content_column="comment")
|
97 |
+
documents = loader.load()
|
98 |
+
except Exception as e:
|
99 |
+
return "Error getting reviews: " + str(e)
|
100 |
+
|
101 |
+
# Split text
|
102 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
103 |
+
chunk_size=1000, chunk_overlap=50
|
104 |
+
)
|
105 |
+
docs = text_splitter.split_documents(documents)
|
106 |
+
cache_URL = URL
|
107 |
+
# Vector store
|
108 |
+
db = FAISS.from_documents(docs, embeddings)
|
109 |
+
# Chain to answer questions
|
110 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
|
111 |
+
return qa.run(query)
|
112 |
+
|
113 |
+
|
114 |
+
# Gradio
|
115 |
+
product_box = gr.Textbox(
|
116 |
+
label="URL Produk", placeholder="URL produk dari Shopee Indonesia"
|
117 |
+
)
|
118 |
+
query_box = gr.Textbox(
|
119 |
+
lines=2,
|
120 |
+
label="Kueri",
|
121 |
+
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?",
|
122 |
+
)
|
123 |
+
|
124 |
+
gr.Interface(
|
125 |
+
fn=generate,
|
126 |
+
inputs=[product_box, query_box],
|
127 |
+
outputs=gr.Textbox(label="Jawaban"),
|
128 |
+
title="RingkasUlas",
|
129 |
+
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Shopee Indonesia (https://shopee.co.id/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Shopee dan menyiapkan jawabannya.",
|
130 |
+
allow_flagging="never",
|
131 |
+
examples=[
|
132 |
+
[
|
133 |
+
"https://shopee.co.id/Bantal-Selimut-Balmut-Mini-Karakter-kain-CVC-i.2392232.8965506?xptdk=324a77c0-7860-4059-b00d-5d3b340f8dfe",
|
134 |
+
"Apa yang orang katakan tentang kualitas produknya?",
|
135 |
+
],
|
136 |
+
[
|
137 |
+
"https://shopee.co.id/Bantal-Selimut-Balmut-Mini-Karakter-kain-CVC-i.2392232.8965506?xptdk=324a77c0-7860-4059-b00d-5d3b340f8dfe",
|
138 |
+
"Bagaimana pendapat orang yang kurang puas dengan produknya?",
|
139 |
+
],
|
140 |
+
],
|
141 |
+
).launch()
|
requirements.txt
ADDED
Binary file (228 Bytes). View file
|
|