ringkas-ulas / app.py
kensvin's picture
Update app.py
d996c80 verified
raw
history blame
9.72 kB
import spaces
import os
from dotenv import load_dotenv
import re
from urllib.parse import urlparse
import pandas as pd
import unicodedata as uni
import emoji
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import DataFrameLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import gradio as gr
import logging
import requests
# Load environment variables
load_dotenv()
# Set command line arguments for Gradio
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
import http.client
http.client.HTTPConnection.debuglevel = 1
req_log = logging.getLogger("requests.packages.urllib3")
req_log.setLevel(logging.DEBUG)
req_log.propagate = True
# Constants
LIMIT = 1000 # Limit to 1000 reviews to avoid long processing times
OpenAIModel = "gpt-3.5-turbo"
shop_id = ""
item_id = ""
item = {}
cache_URL = ""
db = None
qa = None
cache = {}
import json
# Function to request product ID from Tokopedia
def request_product_id(shop_domain, product_key, url):
endpoint = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery"
payload = {
"operationName": "PDPGetLayoutQuery",
"variables": {
"shopDomain": f"{shop_domain}",
"productKey": f"{product_key}",
"apiVersion": 1,
},
"query": """fragment ProductVariant on pdpDataProductVariant {
errorCode
parentID
defaultChild
children {
productID
}
__typename
}
query PDPGetLayoutQuery($shopDomain: String, $productKey: String, $layoutID: String, $apiVersion: Float, $userLocation: pdpUserLocation, $extParam: String, $tokonow: pdpTokoNow, $deviceID: String) {
pdpGetLayout(shopDomain: $shopDomain, productKey: $productKey, layoutID: $layoutID, apiVersion: $apiVersion, userLocation: $userLocation, extParam: $extParam, tokonow: $tokonow, deviceID: $deviceID) {
requestID
name
pdpSession
basicInfo {
id: productID
}
components {
name
type
position
data {
...ProductVariant
__typename
}
__typename
}
__typename
}
}
""",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "pdpGetLayout",
}
return requests.request(
method="POST", url=endpoint, json=payload, headers=headers, timeout=30
)
# Function to request product reviews from Tokopedia
def request_product_review(product_id, page=1, limit=20):
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList"
payload = {
"operationName": "productReviewList",
"variables": {
"productID": f"{product_id}",
"page": page,
"limit": limit,
"sortBy": "",
"filterBy": "",
},
"query": """query productReviewList($productID: String!, $page: Int!, $limit: Int!, $sortBy: String, $filterBy: String) {
productrevGetProductReviewList(productID: $productID, page: $page, limit: $limit, sortBy: $sortBy, filterBy: $filterBy) {
productID
list {
id: feedbackID
variantName
message
productRating
reviewCreateTime
reviewCreateTimestamp
isReportable
isAnonymous
reviewResponse {
message
createTime
__typename
}
user {
userID
fullName
image
url
__typename
}
likeDislike {
totalLike
likeStatus
__typename
}
stats {
key
formatted
count
__typename
}
badRatingReasonFmt
__typename
}
shop {
shopID
name
url
image
__typename
}
hasNext
totalReviews
__typename
}
}
""",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "productReviewList",
}
try:
response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60)
response.raise_for_status()
logger.info(f"Request successful. Status code: {response.status_code}")
return response
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
return None
# Function to scrape reviews for a product
def scrape(product_id, max_reviews=LIMIT):
all_reviews = []
page = 1
has_next = True
logger.info("Extracting product reviews...")
while has_next and len(all_reviews) < max_reviews:
response = request_product_review(product_id, page=page)
if not response:
break
data = response.json()["data"]["productrevGetProductReviewList"]
reviews = data["list"]
all_reviews.extend(reviews)
has_next = data["hasNext"]
page += 1
reviews_df = pd.json_normalize(all_reviews)
reviews_df.rename(columns={"message": "comment"}, inplace=True)
reviews_df = reviews_df[["comment"]]
logger.info(reviews_df.head())
return reviews_df
# Function to extract product ID from URL
def get_product_id(URL):
parsed_url = urlparse(URL)
*_, shop, product_key = parsed_url.path.split("/")
response = request_product_id(shop, product_key, URL)
if response:
product_id = response.json()["data"]["pdpGetLayout"]["basicInfo"]["id"]
logger.info(f"Product ID: {product_id}")
return product_id
else:
logger.error("Failed to get product ID")
return None
# Function to clean the reviews DataFrame
def clean(df):
df = df.dropna().copy().reset_index(drop=True) # Drop reviews with empty comments
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # Clean text
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
logger.info("Cleaned reviews DataFrame")
return df
# Function to clean individual text entries
def clean_text(text):
text = uni.normalize("NFKD", text) # Normalize characters
text = emoji.replace_emoji(text, "") # Remove emoji
text = re.sub(r"(\w)\1{2,}", r"\1", text) # Remove repeated characters
text = re.sub(r"[ ]+", " ", text).strip() # Remove extra spaces
return text
# Initialize LLM and embeddings
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
# Function to generate a summary or answer based on reviews
@spaces.GPU
async def generate(URL, query):
global cache_URL, db, qa, cache
if not URL or not query:
return "Input kosong"
try:
product_id = get_product_id(URL)
if not product_id:
return "Gagal mendapatkan product ID"
if URL not in cache:
reviews = scrape(product_id)
if reviews.empty:
return "Tidak ada ulasan ditemukan"
cleaned_reviews = clean(reviews)
loader = DataFrameLoader(cleaned_reviews, page_content_column="comment")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=50
)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
cache[URL] = (docs, db)
else:
docs, db = cache[URL]
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
res = await qa.ainvoke(query)
return res["result"]
except Exception as e:
logger.error(f"Error in generating response: {e}")
return "Gagal mendapatkan review dari URL"
# Set up Gradio interface
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
query_box = gr.Textbox(
lines=2,
label="Kueri",
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?",
)
gr.Interface(
fn=generate,
inputs=[product_box, query_box],
outputs=[gr.Textbox(label="Jawaban")],
title="RingkasUlas",
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.",
allow_flagging="never",
).launch(debug=True)