Spaces:
Sleeping
Sleeping
File size: 9,854 Bytes
fb6b415 1ee2db4 fb6b415 9cb4e8f 286516b c66df08 27e0ec6 286516b 27e0ec6 286516b f87f358 286516b d050f83 a33de26 d050f83 36ab1a9 f87f358 95f9443 f87f358 95f9443 f87f358 95f9443 f87f358 3885d1d 2577f1f f964a19 3885d1d d050f83 3885d1d d050f83 3885d1d 36ab1a9 286516b d050f83 286516b 333b8cd 286516b 1977bde 286516b fb6b415 3885d1d 1977bde 3885d1d c034fa1 3885d1d 286516b 3885d1d 1977bde 3885d1d 5425a02 3885d1d 1977bde 3885d1d 1977bde 3885d1d c034fa1 286516b 3885d1d 286516b 8464276 286516b 7f75ebb 1ee2db4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import spaces
import os
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
from dotenv import load_dotenv
load_dotenv()
import re
from urllib.parse import urlparse, parse_qs
import pandas as pd
import unicodedata as uni
import emoji
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import DataFrameLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
# from tokopedia import request_product_id, request_product_review
import gradio as gr
shop_id = ""
item_id = ""
item = {}
LIMIT = 1000 # Limit to 1000 reviews so that processing does not take too long
import logging
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
import requests
def request_product_id(shop_domain, product_key):
ENDPOINT = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery"
payload = {
"operationName": "PDPGetLayoutQuery",
"variables": {
"shopDomain": f"{shop_domain}",
"productKey": f"{product_key}",
"apiVersion": 1,
},
"query": """fragment ProductVariant on pdpDataProductVariant {
errorCode
parentID
defaultChild
children {
productID
}
__typename
}
query PDPGetLayoutQuery($shopDomain: String, $productKey: String, $layoutID: String, $apiVersion: Float, $userLocation: pdpUserLocation, $extParam: String, $tokonow: pdpTokoNow, $deviceID: String) {
pdpGetLayout(shopDomain: $shopDomain, productKey: $productKey, layoutID: $layoutID, apiVersion: $apiVersion, userLocation: $userLocation, extParam: $extParam, tokonow: $tokonow, deviceID: $deviceID) {
requestID
name
pdpSession
basicInfo {
id: productID
}
components {
name
type
position
data {
...ProductVariant
__typename
}
__typename
}
__typename
}
}
""",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "pdpGetLayout",
}
try:
response = requests.request(
method="POST",
url=ENDPOINT,
json=payload,
headers=headers,
timeout=30
)
response.raise_for_status() # Raise an exception for non-2xx status codes
logger.info(f"Request successful. Status code: {response.status_code}")
# Process the response data
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
else:
return response
def request_product_review(product_id, page=1, limit=20):
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList"
payload = {
"operationName": "productReviewList",
"variables": {
"productID": f"{product_id}",
"page": page,
"limit": limit,
"sortBy": "",
"filterBy": "",
},
"query": """query productReviewList($productID: String!, $page: Int!, $limit: Int!, $sortBy: String, $filterBy: String) {
productrevGetProductReviewList(productID: $productID, page: $page, limit: $limit, sortBy: $sortBy, filterBy: $filterBy) {
productID
list {
id: feedbackID
variantName
message
productRating
reviewCreateTime
reviewCreateTimestamp
isReportable
isAnonymous
reviewResponse {
message
createTime
__typename
}
user {
userID
fullName
image
url
__typename
}
likeDislike {
totalLike
likeStatus
__typename
}
stats {
key
formatted
count
__typename
}
badRatingReasonFmt
__typename
}
shop {
shopID
name
url
image
__typename
}
hasNext
totalReviews
__typename
}
}
""",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "productReviewList",
}
try:
response = requests.request(
method="POST", url=ENDPOINT, json=payload, headers=headers, timeout=30
)
response.raise_for_status() # Raise an exception for non-2xx status codes
logger.info(f"Request successful. Status code: {response.status_code}")
# Process the response data
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
else:
return response
def scrape(product_id, max_reviews=LIMIT):
all_reviews = []
page = 1
has_next = True
logger.info("Extracting product reviews...")
# while has_next and len(all_reviews) <= max_reviews:
response = request_product_review(product_id, page=page)
data = response.json()["data"]["productrevGetProductReviewList"]
reviews = data["list"]
all_reviews.extend(reviews)
has_next = data["hasNext"]
page += 1
reviews_df = pd.json_normalize(all_reviews)
reviews_df.rename(columns={"message": "comment"}, inplace=True)
reviews_df = reviews_df[["comment"]]
logger.info(reviews_df.head())
return reviews_df
def get_product_id(URL):
parsed_url = urlparse(URL)
*_, SHOP, PRODUCT_KEY = parsed_url.path.split("/")
product_id = request_product_id(SHOP, PRODUCT_KEY).json()["data"]["pdpGetLayout"][
"basicInfo"
]["id"]
logger.info(product_id)
return product_id
# Clean
def clean(df):
df = df.dropna().copy().reset_index(drop=True) # drop reviews with empty comments
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # clean text
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews
logger.info("cleaned")
return df
def clean_text(text):
text = uni.normalize("NFKD", text) # normalise characters
text = emoji.replace_emoji(text, "") # remove emoji
text = re.sub(r"(\w)\1{2,}", r"\1", text) # repeated chars
text = re.sub(r"[ ]+", " ", text).strip() # remove extra spaces
return text
# LLM
OpenAIModel = "gpt-3.5-turbo"
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
# Embeddings
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
cache_URL = ""
db = None
qa = None
cache = {}
@spaces.GPU
async def generate(URL, query):
global cache_URL, db, qa, cache
if URL == "" or query == "":
return "Input kosong"
else:
try:
product_id = get_product_id(URL)
if URL not in cache:
# Get reviews
try:
reviews = scrape(product_id)
# Clean reviews
cleaned_reviews = clean(reviews)
# Load data
loader = DataFrameLoader(
cleaned_reviews, page_content_column="comment"
)
documents = loader.load()
except Exception as e:
return "Error getting reviews: " + str(e)
else:
# Split text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=50
)
docs = text_splitter.split_documents(documents)
# Vector store
db = FAISS.from_documents(docs, embeddings)
# Store in cache
cache[URL] = (docs, db)
# Retrieve from cache
docs, db = cache[URL]
# Chain to answer questions
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
res = await qa.ainvoke(query)
# Process result
return res["result"]
except:
return "Gagal mendapatkan review dari URL"
# Gradio
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
query_box = gr.Textbox(
lines=2,
label="Kueri",
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?",
)
gr.Interface(
fn=generate,
inputs=[product_box, query_box],
outputs=[gr.Textbox(label="Jawaban")],
title="RingkasUlas",
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.",
allow_flagging="never",
).launch(debug=True)
|