Spaces:
Runtime error
Runtime error
Commit
·
bc6ba08
1
Parent(s):
a5e95c0
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import transformers
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
|
7 |
+
# Download and load the model and tokenizer
|
8 |
+
model_name = 'bert-base-uncased'
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Define a function to classify a single text
|
13 |
+
def classify_text(text):
|
14 |
+
# Tokenize the text and add special tokens
|
15 |
+
inputs = tokenizer.encode_plus(
|
16 |
+
text,
|
17 |
+
add_special_tokens=True,
|
18 |
+
return_tensors='pt',
|
19 |
+
max_length=512
|
20 |
+
)
|
21 |
+
|
22 |
+
# Get the input IDs and attention mask
|
23 |
+
input_ids = inputs['input_ids']
|
24 |
+
attention_mask = inputs['attention_mask']
|
25 |
+
|
26 |
+
# Get the predicted label
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(input_ids, attention_mask)
|
29 |
+
logits = outputs[0]
|
30 |
+
predicted_label = torch.argmax(logits, dim=1).item()
|
31 |
+
|
32 |
+
return predicted_label
|
33 |
+
|
34 |
+
# Define the Streamlit app
|
35 |
+
def main():
|
36 |
+
st.title('Text Classification with BERT')
|
37 |
+
|
38 |
+
# Allow the user to upload a CSV file
|
39 |
+
uploaded_file = st.file_uploader('Upload a CSV file', type='csv')
|
40 |
+
if uploaded_file is not None:
|
41 |
+
data = pd.read_csv(uploaded_file)
|
42 |
+
|
43 |
+
# Create a new column for the predicted labels
|
44 |
+
data['predicted_label'] = data['text'].apply(classify_text)
|
45 |
+
|
46 |
+
st.write(data)
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
main()
|