import re, os from ebooklib import epub import PyPDF2 from PyPDF2 import PdfReader from bs4 import BeautifulSoup def is_japanese(string): for ch in string: if ord(ch) > 0x3040 and ord(ch) < 0x30FF: return True return False def is_chinese(string): for ch in string: if '\u4e00' <= ch <= '\u9fff': return True return False def replace_quotes(text): # 替换中文、日文引号为英文引号 text = re.sub(r'[“”‘’『』「」()()]', '"', text) return text def extrac(text): text = replace_quotes(text) # 替换引号 text = re.sub("<[^>]*>", "", text) # 移除 HTML 标签 # 使用换行符和标点符号进行初步分割 preliminary_sentences = re.split(r'([\n。!?\.\?!])', text) final_sentences = [] temp_sentence = "" for piece in preliminary_sentences: if re.match(r'[\n。!?\.\?!]', piece): temp_sentence += piece # 分割句子并保留标点 sub_sentences = re.split(r'(?<=[。!?\.\?!])', temp_sentence) for sub_sentence in sub_sentences: # 检查是否混合语言 if len(sub_sentence) > 20 or is_mixed_language(sub_sentence): # 进一步分割 final_sentences.extend(split_mixed_language(sub_sentence)) else: final_sentences.append(sub_sentence) temp_sentence = "" else: temp_sentence += piece # 添加最后一个句子(如果有) if temp_sentence: final_sentences.append(temp_sentence) return [s.replace('"','').replace("<","").replace(">","") for s in final_sentences if s] # 移除空字符串 def is_mixed_language(sentence): contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None contains_english = re.search(r'[a-zA-Z]', sentence) is not None languages_count = sum([contains_chinese, contains_japanese, contains_english]) return languages_count > 1 def split_mixed_language(sentence): # 分割混合语言句子 sub_sentences = re.split(r'(?<=[。!?\.\?!])(?=")|(?<=")(?=[\u4e00-\u9fff\u3040-\u30ff\u31f0-\u31ff]|[a-zA-Z])', sentence) return [s.strip() for s in sub_sentences if s.strip()] def seconds_to_ass_time(seconds): """将秒数转换为ASS时间格式""" hours = int(seconds / 3600) minutes = int((seconds % 3600) / 60) seconds = int(seconds) % 60 milliseconds = int((seconds - int(seconds)) * 1000) return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10)) def extract_text_from_epub(file_path): book = epub.read_epub(file_path) content = [] for item in book.items: if isinstance(item, epub.EpubHtml): soup = BeautifulSoup(item.content, 'html.parser') content.append(soup.get_text()) return '\n'.join(content) def extract_text_from_pdf(file_path): with open(file_path, 'rb') as file: reader = PdfReader(file) content = [page.extract_text() for page in reader.pages] return '\n'.join(content) def remove_annotations(text): # 移除方括号、尖括号和中文方括号中的内容 text = re.sub(r'\[.*?\]', '', text) text = re.sub(r'\<.*?\>', '', text) text = re.sub(r'​``【oaicite:1】``​', '', text) return text def extract_text_from_file(inputFile): file_extension = os.path.splitext(inputFile)[1].lower() if file_extension == ".epub": return extract_text_from_epub(inputFile) elif file_extension == ".pdf": return extract_text_from_pdf(inputFile) elif file_extension == ".txt": with open(inputFile, 'r', encoding='utf-8') as f: return f.read() else: raise ValueError(f"Unsupported file format: {file_extension}") if __name__ == "__main__": text = "你好,这是一段用来测试自动标注的文本。こんにちは,これは「自動ラベリングのテスト用テキスト」です.Hello, this is a piece of text to test autotagging.你好!今天我们要介绍VITS项目,其重点是使用了“GAN Duration predictor”和“transformer flow”,并且接入了Bert模型来提升韵律。Bert embedding会在稍后介绍。" print(extrac(text))