Spaces:
Sleeping
Sleeping
""" | |
api服务 多版本多模型 fastapi实现 | |
""" | |
import logging | |
import gc | |
import random | |
from pydantic import BaseModel | |
import gradio | |
import numpy as np | |
import utils | |
from fastapi import FastAPI, Query, Request | |
from fastapi.responses import Response, FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from io import BytesIO | |
from scipy.io import wavfile | |
import uvicorn | |
import torch | |
import webbrowser | |
import psutil | |
import GPUtil | |
from typing import Dict, Optional, List, Set | |
import os | |
from tools.log import logger | |
from urllib.parse import unquote | |
from infer import infer, get_net_g, latest_version | |
import tools.translate as trans | |
from re_matching import cut_sent | |
from config import config | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
class Model: | |
"""模型封装类""" | |
def __init__(self, config_path: str, model_path: str, device: str, language: str): | |
self.config_path: str = os.path.normpath(config_path) | |
self.model_path: str = os.path.normpath(model_path) | |
self.device: str = device | |
self.language: str = language | |
self.hps = utils.get_hparams_from_file(config_path) | |
self.spk2id: Dict[str, int] = self.hps.data.spk2id # spk - id 映射字典 | |
self.id2spk: Dict[int, str] = dict() # id - spk 映射字典 | |
for speaker, speaker_id in self.hps.data.spk2id.items(): | |
self.id2spk[speaker_id] = speaker | |
self.version: str = ( | |
self.hps.version if hasattr(self.hps, "version") else latest_version | |
) | |
self.net_g = get_net_g( | |
model_path=model_path, | |
version=self.version, | |
device=device, | |
hps=self.hps, | |
) | |
def to_dict(self) -> Dict[str, any]: | |
return { | |
"config_path": self.config_path, | |
"model_path": self.model_path, | |
"device": self.device, | |
"language": self.language, | |
"spk2id": self.spk2id, | |
"id2spk": self.id2spk, | |
"version": self.version, | |
} | |
class Models: | |
def __init__(self): | |
self.models: Dict[int, Model] = dict() | |
self.num = 0 | |
# spkInfo[角色名][模型id] = 角色id | |
self.spk_info: Dict[str, Dict[int, int]] = dict() | |
self.path2ids: Dict[str, Set[int]] = dict() # 路径指向的model的id | |
def init_model( | |
self, config_path: str, model_path: str, device: str, language: str | |
) -> int: | |
""" | |
初始化并添加一个模型 | |
:param config_path: 模型config.json路径 | |
:param model_path: 模型路径 | |
:param device: 模型推理使用设备 | |
:param language: 模型推理默认语言 | |
""" | |
# 若路径中的模型已存在,则不添加模型,若不存在,则进行初始化。 | |
model_path = os.path.realpath(model_path) | |
if model_path not in self.path2ids.keys(): | |
self.path2ids[model_path] = {self.num} | |
self.models[self.num] = Model( | |
config_path=config_path, | |
model_path=model_path, | |
device=device, | |
language=language, | |
) | |
logger.success(f"添加模型{model_path},使用配置文件{os.path.realpath(config_path)}") | |
else: | |
# 获取一个指向id | |
m_id = next(iter(self.path2ids[model_path])) | |
self.models[self.num] = self.models[m_id] | |
self.path2ids[model_path].add(self.num) | |
logger.success("模型已存在,添加模型引用。") | |
# 添加角色信息 | |
for speaker, speaker_id in self.models[self.num].spk2id.items(): | |
if speaker not in self.spk_info.keys(): | |
self.spk_info[speaker] = {self.num: speaker_id} | |
else: | |
self.spk_info[speaker][self.num] = speaker_id | |
# 修改计数 | |
self.num += 1 | |
return self.num - 1 | |
def del_model(self, index: int) -> Optional[int]: | |
"""删除对应序号的模型,若不存在则返回None""" | |
if index not in self.models.keys(): | |
return None | |
# 删除角色信息 | |
for speaker, speaker_id in self.models[index].spk2id.items(): | |
self.spk_info[speaker].pop(index) | |
if len(self.spk_info[speaker]) == 0: | |
# 若对应角色的所有模型都被删除,则清除该角色信息 | |
self.spk_info.pop(speaker) | |
# 删除路径信息 | |
model_path = os.path.realpath(self.models[index].model_path) | |
self.path2ids[model_path].remove(index) | |
if len(self.path2ids[model_path]) == 0: | |
self.path2ids.pop(model_path) | |
logger.success(f"删除模型{model_path}, id = {index}") | |
else: | |
logger.success(f"删除模型引用{model_path}, id = {index}") | |
# 删除模型 | |
self.models.pop(index) | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return index | |
def get_models(self): | |
"""获取所有模型""" | |
return self.models | |
if __name__ == "__main__": | |
app = FastAPI() | |
app.logger = logger | |
# 挂载静态文件 | |
StaticDir: str = "./Web" | |
dirs = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()] | |
files = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()] | |
for dirName in dirs: | |
app.mount( | |
f"/{dirName}", | |
StaticFiles(directory=f"./{StaticDir}/{dirName}"), | |
name=dirName, | |
) | |
loaded_models = Models() | |
# 加载模型 | |
models_info = config.server_config.models | |
for model_info in models_info: | |
loaded_models.init_model( | |
config_path=model_info["config"], | |
model_path=model_info["model"], | |
device=model_info["device"], | |
language=model_info["language"], | |
) | |
async def index(): | |
return FileResponse("./Web/index.html") | |
class Text(BaseModel): | |
text: str | |
def voice( | |
request: Request, # fastapi自动注入 | |
text: Text, | |
model_id: int = Query(..., description="模型ID"), # 模型序号 | |
speaker_name: str = Query( | |
None, description="说话人名" | |
), # speaker_name与 speaker_id二者选其一 | |
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"), | |
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"), | |
noise: float = Query(0.2, description="感情"), | |
noisew: float = Query(0.9, description="音素长度"), | |
length: float = Query(1, description="语速"), | |
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值 | |
auto_translate: bool = Query(False, description="自动翻译"), | |
auto_split: bool = Query(False, description="自动切分"), | |
): | |
"""语音接口""" | |
text = text.text | |
logger.info( | |
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )} text={text}" | |
) | |
# 检查模型是否存在 | |
if model_id not in loaded_models.models.keys(): | |
return {"status": 10, "detail": f"模型model_id={model_id}未加载"} | |
# 检查是否提供speaker | |
if speaker_name is None and speaker_id is None: | |
return {"status": 11, "detail": "请提供speaker_name或speaker_id"} | |
elif speaker_name is None: | |
# 检查speaker_id是否存在 | |
if speaker_id not in loaded_models.models[model_id].id2spk.keys(): | |
return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"} | |
speaker_name = loaded_models.models[model_id].id2spk[speaker_id] | |
# 检查speaker_name是否存在 | |
if speaker_name not in loaded_models.models[model_id].spk2id.keys(): | |
return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"} | |
if language is None: | |
language = loaded_models.models[model_id].language | |
if auto_translate: | |
text = trans.translate(Sentence=text, to_Language=language.lower()) | |
if not auto_split: | |
with torch.no_grad(): | |
audio = infer( | |
text=text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise, | |
noise_scale_w=noisew, | |
length_scale=length, | |
sid=speaker_name, | |
language=language, | |
hps=loaded_models.models[model_id].hps, | |
net_g=loaded_models.models[model_id].net_g, | |
device=loaded_models.models[model_id].device, | |
) | |
else: | |
texts = cut_sent(text) | |
audios = [] | |
with torch.no_grad(): | |
for t in texts: | |
audios.append( | |
infer( | |
text=t, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise, | |
noise_scale_w=noisew, | |
length_scale=length, | |
sid=speaker_name, | |
language=language, | |
hps=loaded_models.models[model_id].hps, | |
net_g=loaded_models.models[model_id].net_g, | |
device=loaded_models.models[model_id].device, | |
) | |
) | |
audios.append(np.zeros((int)(44100 * 0.3))) | |
audio = np.concatenate(audios) | |
audio = gradio.processing_utils.convert_to_16_bit_wav(audio) | |
wavContent = BytesIO() | |
wavfile.write( | |
wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio | |
) | |
response = Response(content=wavContent.getvalue(), media_type="audio/wav") | |
return response | |
def voice( | |
request: Request, # fastapi自动注入 | |
text: str = Query(..., description="输入文字"), | |
model_id: int = Query(..., description="模型ID"), # 模型序号 | |
speaker_name: str = Query( | |
None, description="说话人名" | |
), # speaker_name与 speaker_id二者选其一 | |
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"), | |
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"), | |
noise: float = Query(0.2, description="感情"), | |
noisew: float = Query(0.9, description="音素长度"), | |
length: float = Query(1, description="语速"), | |
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值 | |
auto_translate: bool = Query(False, description="自动翻译"), | |
auto_split: bool = Query(False, description="自动切分"), | |
): | |
"""语音接口""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )}" | |
) | |
# 检查模型是否存在 | |
if model_id not in loaded_models.models.keys(): | |
return {"status": 10, "detail": f"模型model_id={model_id}未加载"} | |
# 检查是否提供speaker | |
if speaker_name is None and speaker_id is None: | |
return {"status": 11, "detail": "请提供speaker_name或speaker_id"} | |
elif speaker_name is None: | |
# 检查speaker_id是否存在 | |
if speaker_id not in loaded_models.models[model_id].id2spk.keys(): | |
return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"} | |
speaker_name = loaded_models.models[model_id].id2spk[speaker_id] | |
# 检查speaker_name是否存在 | |
if speaker_name not in loaded_models.models[model_id].spk2id.keys(): | |
return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"} | |
if language is None: | |
language = loaded_models.models[model_id].language | |
if auto_translate: | |
text = trans.translate(Sentence=text, to_Language=language.lower()) | |
if not auto_split: | |
with torch.no_grad(): | |
audio = infer( | |
text=text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise, | |
noise_scale_w=noisew, | |
length_scale=length, | |
sid=speaker_name, | |
language=language, | |
hps=loaded_models.models[model_id].hps, | |
net_g=loaded_models.models[model_id].net_g, | |
device=loaded_models.models[model_id].device, | |
) | |
else: | |
texts = cut_sent(text) | |
audios = [] | |
with torch.no_grad(): | |
for t in texts: | |
audios.append( | |
infer( | |
text=t, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise, | |
noise_scale_w=noisew, | |
length_scale=length, | |
sid=speaker_name, | |
language=language, | |
hps=loaded_models.models[model_id].hps, | |
net_g=loaded_models.models[model_id].net_g, | |
device=loaded_models.models[model_id].device, | |
) | |
) | |
audios.append(np.zeros((int)(44100 * 0.3))) | |
audio = np.concatenate(audios) | |
audio = gradio.processing_utils.convert_to_16_bit_wav(audio) | |
wavContent = BytesIO() | |
wavfile.write( | |
wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio | |
) | |
response = Response(content=wavContent.getvalue(), media_type="audio/wav") | |
return response | |
def get_loaded_models_info(request: Request): | |
"""获取已加载模型信息""" | |
result: Dict[str, Dict] = dict() | |
for key, model in loaded_models.models.items(): | |
result[str(key)] = model.to_dict() | |
return result | |
def delete_model( | |
request: Request, model_id: int = Query(..., description="删除模型id") | |
): | |
"""删除指定模型""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/models/delete { unquote(str(request.query_params) )}" | |
) | |
result = loaded_models.del_model(model_id) | |
if result is None: | |
return {"status": 14, "detail": f"模型{model_id}不存在,删除失败"} | |
return {"status": 0, "detail": "删除成功"} | |
def add_model( | |
request: Request, | |
model_path: str = Query(..., description="添加模型路径"), | |
config_path: str = Query( | |
None, description="添加模型配置文件路径,不填则使用./config.json或../config.json" | |
), | |
device: str = Query("cuda", description="推理使用设备"), | |
language: str = Query("ZH", description="模型默认语言"), | |
): | |
"""添加指定模型:允许重复添加相同路径模型,且不重复占用内存""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/models/add { unquote(str(request.query_params) )}" | |
) | |
if config_path is None: | |
model_dir = os.path.dirname(model_path) | |
if os.path.isfile(os.path.join(model_dir, "config.json")): | |
config_path = os.path.join(model_dir, "config.json") | |
elif os.path.isfile(os.path.join(model_dir, "../config.json")): | |
config_path = os.path.join(model_dir, "../config.json") | |
else: | |
return { | |
"status": 15, | |
"detail": "查询未传入配置文件路径,同时默认路径./与../中不存在配置文件config.json。", | |
} | |
try: | |
model_id = loaded_models.init_model( | |
config_path=config_path, | |
model_path=model_path, | |
device=device, | |
language=language, | |
) | |
except Exception: | |
logging.exception("模型加载出错") | |
return { | |
"status": 16, | |
"detail": "模型加载出错,详细查看日志", | |
} | |
return { | |
"status": 0, | |
"detail": "模型添加成功", | |
"Data": { | |
"model_id": model_id, | |
"model_info": loaded_models.models[model_id].to_dict(), | |
}, | |
} | |
def _get_all_models(root_dir: str = "Data", only_unloaded: bool = False): | |
"""从root_dir搜索获取所有可用模型""" | |
result: Dict[str, List[str]] = dict() | |
files = os.listdir(root_dir) + ["."] | |
for file in files: | |
if os.path.isdir(os.path.join(root_dir, file)): | |
sub_dir = os.path.join(root_dir, file) | |
# 搜索 "sub_dir" 、 "sub_dir/models" 两个路径 | |
result[file] = list() | |
sub_files = os.listdir(sub_dir) | |
model_files = [] | |
for sub_file in sub_files: | |
relpath = os.path.realpath(os.path.join(sub_dir, sub_file)) | |
if only_unloaded and relpath in loaded_models.path2ids.keys(): | |
continue | |
if sub_file.endswith(".pth") and sub_file.startswith("G_"): | |
if os.path.isfile(relpath): | |
model_files.append(sub_file) | |
# 对模型文件按步数排序 | |
model_files = sorted( | |
model_files, | |
key=lambda pth: int(pth.lstrip("G_").rstrip(".pth")) | |
if pth.lstrip("G_").rstrip(".pth").isdigit() | |
else 10**10, | |
) | |
result[file] = model_files | |
models_dir = os.path.join(sub_dir, "models") | |
model_files = [] | |
if os.path.isdir(models_dir): | |
sub_files = os.listdir(models_dir) | |
for sub_file in sub_files: | |
relpath = os.path.realpath(os.path.join(models_dir, sub_file)) | |
if only_unloaded and relpath in loaded_models.path2ids.keys(): | |
continue | |
if sub_file.endswith(".pth") and sub_file.startswith("G_"): | |
if os.path.isfile(os.path.join(models_dir, sub_file)): | |
model_files.append(f"models/{sub_file}") | |
# 对模型文件按步数排序 | |
model_files = sorted( | |
model_files, | |
key=lambda pth: int(pth.lstrip("models/G_").rstrip(".pth")) | |
if pth.lstrip("models/G_").rstrip(".pth").isdigit() | |
else 10**10, | |
) | |
result[file] += model_files | |
if len(result[file]) == 0: | |
result.pop(file) | |
return result | |
def get_unloaded_models_info( | |
request: Request, root_dir: str = Query("Data", description="搜索根目录") | |
): | |
"""获取未加载模型""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/models/get_unloaded { unquote(str(request.query_params) )}" | |
) | |
return _get_all_models(root_dir, only_unloaded=True) | |
def get_local_models_info( | |
request: Request, root_dir: str = Query("Data", description="搜索根目录") | |
): | |
"""获取全部本地模型""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/models/get_local { unquote(str(request.query_params) )}" | |
) | |
return _get_all_models(root_dir, only_unloaded=False) | |
def get_status(): | |
"""获取电脑运行状态""" | |
cpu_percent = psutil.cpu_percent(interval=1) | |
memory_info = psutil.virtual_memory() | |
memory_total = memory_info.total | |
memory_available = memory_info.available | |
memory_used = memory_info.used | |
memory_percent = memory_info.percent | |
gpuInfo = [] | |
devices = ["cpu"] | |
for i in range(torch.cuda.device_count()): | |
devices.append(f"cuda:{i}") | |
gpus = GPUtil.getGPUs() | |
for gpu in gpus: | |
gpuInfo.append( | |
{ | |
"gpu_id": gpu.id, | |
"gpu_load": gpu.load, | |
"gpu_memory": { | |
"total": gpu.memoryTotal, | |
"used": gpu.memoryUsed, | |
"free": gpu.memoryFree, | |
}, | |
} | |
) | |
return { | |
"devices": devices, | |
"cpu_percent": cpu_percent, | |
"memory_total": memory_total, | |
"memory_available": memory_available, | |
"memory_used": memory_used, | |
"memory_percent": memory_percent, | |
"gpu": gpuInfo, | |
} | |
def translate( | |
request: Request, | |
texts: str = Query(..., description="待翻译文本"), | |
to_language: str = Query(..., description="翻译目标语言"), | |
): | |
"""翻译""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/tools/translate { unquote(str(request.query_params) )}" | |
) | |
return {"texts": trans.translate(Sentence=texts, to_Language=to_language)} | |
all_examples: Dict[str, Dict[str, List]] = dict() # 存放示例 | |
def random_example( | |
request: Request, | |
language: str = Query(None, description="指定语言,未指定则随机返回"), | |
root_dir: str = Query("Data", description="搜索根目录"), | |
): | |
""" | |
获取一个随机音频+文本,用于对比,音频会从本地目录随机选择。 | |
""" | |
logger.info( | |
f"{request.client.host}:{request.client.port}/tools/random_example { unquote(str(request.query_params) )}" | |
) | |
global all_examples | |
# 数据初始化 | |
if root_dir not in all_examples.keys(): | |
all_examples[root_dir] = {"ZH": [], "JP": [], "EN": []} | |
examples = all_examples[root_dir] | |
# 从项目Data目录中搜索train/val.list | |
for root, directories, _files in os.walk(root_dir): | |
for file in _files: | |
if file in ["train.list", "val.list"]: | |
with open( | |
os.path.join(root, file), mode="r", encoding="utf-8" | |
) as f: | |
lines = f.readlines() | |
for line in lines: | |
data = line.split("|") | |
if len(data) != 7: | |
continue | |
# 音频存在 且语言为ZH/EN/JP | |
if os.path.isfile(data[0]) and data[2] in [ | |
"ZH", | |
"JP", | |
"EN", | |
]: | |
examples[data[2]].append( | |
{ | |
"text": data[3], | |
"audio": data[0], | |
"speaker": data[1], | |
} | |
) | |
examples = all_examples[root_dir] | |
if language is None: | |
if len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) == 0: | |
return {"status": 17, "detail": "没有加载任何示例数据"} | |
else: | |
# 随机选一个 | |
rand_num = random.randint( | |
0, | |
len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) - 1, | |
) | |
# ZH | |
if rand_num < len(examples["ZH"]): | |
return {"status": 0, "Data": examples["ZH"][rand_num]} | |
# JP | |
if rand_num < len(examples["ZH"]) + len(examples["JP"]): | |
return { | |
"status": 0, | |
"Data": examples["JP"][rand_num - len(examples["ZH"])], | |
} | |
# EN | |
return { | |
"status": 0, | |
"Data": examples["EN"][ | |
rand_num - len(examples["ZH"]) - len(examples["JP"]) | |
], | |
} | |
else: | |
if len(examples[language]) == 0: | |
return {"status": 17, "detail": f"没有加载任何{language}数据"} | |
return { | |
"status": 0, | |
"Data": examples[language][ | |
random.randint(0, len(examples[language]) - 1) | |
], | |
} | |
def get_audio(request: Request, path: str = Query(..., description="本地音频路径")): | |
logger.info( | |
f"{request.client.host}:{request.client.port}/tools/get_audio { unquote(str(request.query_params) )}" | |
) | |
if not os.path.isfile(path): | |
return {"status": 18, "detail": "指定音频不存在"} | |
if not path.endswith(".wav"): | |
return {"status": 19, "detail": "非wav格式文件"} | |
return FileResponse(path=path) | |
logger.warning("本地服务,请勿将服务端口暴露于外网") | |
logger.info(f"api文档地址 http://127.0.0.1:{config.server_config.port}/docs") | |
webbrowser.open(f"http://127.0.0.1:{config.server_config.port}") | |
uvicorn.run( | |
app, port=config.server_config.port, host="0.0.0.0", log_level="warning" | |
) | |